208
Views
0
CrossRef citations to date
0
Altmetric
Articles

Manipulating surface plasmon polaritons with nanostructured TCO metamaterials

, &
Pages 493-503 | Received 11 Feb 2018, Accepted 30 Nov 2018, Published online: 13 Dec 2018

References

  • Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424(6950):824–830. doi: 10.1038/nature01937
  • Lin X, Li R, Gao F, et al. Loss induced amplification of graphene plasmons. Opt Lett. 2016;41(4):681–684. doi: 10.1364/OL.41.000681
  • Li R, Zheng B, Lin X, et al. Design of Ultra-compact Graphene-based Superscatterers. IEEE J Sel Top Quantum Electron. 2017;23(1):4600208.
  • Li R, Lin X, Lin S, et al. Graphene induced mode bifurcation at low input power. Carbon N Y. 2016;98:463–467. doi: 10.1016/j.carbon.2015.11.029
  • Liscidini M, Sipe JE. Quasiguided surface plasmon excitations in anisotropic materials. Phys Rev B. 2010;81(11):760–762. doi: 10.1103/PhysRevB.81.115335
  • Schuller JA, Barnard ES, Cai W, et al. Plasmonics for extreme light concentration and manipulation. Nat Mater. 2010;9(3):193–204. doi: 10.1038/nmat2630
  • Kabashin AV, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater. 2009;8(11):867–871. doi: 10.1038/nmat2546
  • Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 2006;311(5758):189–193. doi: 10.1126/science.1114849
  • Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nat Photonics. 2010;4(2):83–91. doi: 10.1038/nphoton.2009.282
  • Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9(3):205–213. doi: 10.1038/nmat2629
  • Oulton RF, Sorger VJ, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature. 2009;461(7264):629–632. doi: 10.1038/nature08364
  • Pendry JB, Martín-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science. 2004;305(5685):847–848. doi: 10.1126/science.1098999
  • Williams CR, Andrews SR, Maier SA, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat Photonics. 2008;2(3):175–179. doi: 10.1038/nphoton.2007.301
  • Yang Y, Chen H, Xiao S, et al. Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons. Opt Express. 2015;23(15):19074–19081. doi: 10.1364/OE.23.019074
  • Yang Y, Shen L, Jing L, et al. Ultrathin metasurface with topological transition for manipulating spoof surface plasmon polaritonsar. Xiv preprint arXiv. 2016:1604.05830.
  • Zhang J, Xiao S, Wubs M, et al. Surface plasmon wave adapter designed with transformation optics. ACS Nano. 2011;5(6):4359–4364. doi: 10.1021/nn200516r
  • Soref RA, Bennett BR. Electrooptical effects in silicon. IEEE J Quant Electron. 1987;23:123–129. doi: 10.1109/JQE.1987.1073206
  • West PR, Ishii S, Naik GV, et al. Searching for better plasmonic materials. Laser Photon Rev. 2010;4:795–808. doi: 10.1002/lpor.200900055
  • Naik GV, Liu JJ, Kildishev AV, et al. Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials. Proc Natl Acad Sci USA. 2012;109:8834–8838. doi: 10.1073/pnas.1121517109
  • Cada M, Blazek D, Pistora J, et al. Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide. Opt Mater Express. 2015;5:340–352. doi: 10.1364/OME.5.000340
  • Naik GV, Boltasseva A. Semiconductors for plasmonics and metamaterials. Phys Status Solidi Rapid Res Lett. 2010;4:295–297. doi: 10.1002/pssr.201004269
  • Park J, Kang J-H, Liu XG, et al. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Sci Rep. 2015;5:15754. doi: 10.1038/srep15754
  • Liu YP, Tom K, Wang X, et al. Dynamic control of optical response in layered metal chalcogenide nanoplates. Nano Lett. 2016;16:488–496. doi: 10.1021/acs.nanolett.5b04140
  • Feigenbaum E, Diest K, Atwater HA. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 2010;10:2111–2116. doi: 10.1021/nl1006307
  • Tanaka H, Kamogawa M, Ohtsuki Y-H. The interaction between bulk plasmons and electromagnetic waves assisted by surface roughness. Proc Jpn Acad Ser B Phys Bio Sci. 1999;75:190–194. doi: 10.2183/pjab.75.190
  • Kretschmann E. Scattering of light at rough surfaces due to the excitation of surface plasmons. Zeitschr Phys. 1969;227:412–426.
  • Bobb DA, Zhu G, Mayy M, et al. Engineering of low-loss metal for nanoplasmonic and metamaterials applications. Appl Phys Lett. 2009;95:151102–151103. doi: 10.1063/1.3237179
  • Blaber M, Arnold M, Ford M. Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material. J Phy Cond Matt. 2009;21:144211. doi: 10.1088/0953-8984/21/14/144211
  • Blaber MG, Arnold MD, Ford MJ. A review of the optical properties of alloys and intermetallics for plasmonics. J Phy Cond Matt. 2010;22:143201. doi: 10.1088/0953-8984/22/14/143201
  • Naik GV, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt Mater Express. 2011;1:1090–1099. doi: 10.1364/OME.1.001090
  • Naik GV, Schroeder JL, Ni X, et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express. 2012;2:478–489. doi: 10.1364/OME.2.000478
  • Franzen S. Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J Phys Chem C. 2008;112:6027–6032. doi: 10.1021/jp7097813
  • Rhodes C, Franzen S, Maria JP, et al. Surface plasmon resonance in conducting metal oxides. J Appl Phys. 2006;100:054905. doi: 10.1063/1.2222070
  • Noginov M, Gu L, Livenere J, et al. Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl Phys Lett. 2011;99:021101. doi: 10.1063/1.3604792
  • Gric T. Surface-plasmon-polaritons at the interface of nanostructured metamaterials. Pr Electromaghn. Res. 2016;46:165–172. doi: 10.2528/PIERM15121605
  • Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv Mater. 2013;25:3264–3294. doi: 10.1002/adma.201205076
  • Miret JJ, Sorni JA, Naserpour M, et al. Nonlocal dispersion anomalies of Dyakonov-like surface waves at hyperbolic media interfaces. Photonic Nanostruct. 2016;18:16–22. doi: 10.1016/j.photonics.2015.12.001
  • Takayama O, Artigas D, Torner L. Practical dyakonons. Opt Lett. 2012;37:4311–4313. doi: 10.1364/OL.37.004311
  • Zapata-Rodriguez CJ, Miret JJ, Vukovic S, et al. Engineered surface waves in hyperbolic metamaterials. Opt Express. 2013;21:19113. doi: 10.1364/OE.21.019113
  • Miret JJ, Zapata-Rodriguez CJ, Jaksic Z, et al. Hybrid surface waves in semi-infinite metal-dielectric lattices. J Nanophotonics. 2012;6:773. doi: 10.1117/1.JNP.6.063525
  • Sorni JA, Naserpour M, Zapata-Rodriguez CJ, et al. Dyakonov surface waves in lossy metamaterials. Opt Commun. 2015;355:251–255. doi: 10.1016/j.optcom.2015.06.026
  • Cattom MG, Tilley DR. Introduction to surface and superlattice excitations. Bristol (UK): IOP Publishing; 2005; Ch.8–9.
  • Li R, Cheng C, Ren F-F, et al. Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal. Appl Phys Lett. 2008;92:141115. doi: 10.1063/1.2908920
  • Orlov AA, Voroshilov PM, Belov PA, et al. Engineered optical nonlocality in nanostructured metamaterials. Phys Rev B. 2011;84:045424. doi: 10.1103/PhysRevB.84.045424
  • Zhang Y-L, Zhang Q, Wang X-Z. Extraordinary surface polaritons in obliquely truncated dielectric/metal metamaterials. J Opt Soc America B. 2016;33:543. doi: 10.1364/JOSAB.33.000543
  • Iorsh I, Orlov A, Belov P, et al. Interface modes in nanostructured metal-dielectric metamaterials. Appl Phys Lett. 2011;99(15):151914. doi: 10.1063/1.3643152
  • Gric T, Hess O. Controlling hybrid-polarization surface plasmon polaritons in dielectric-transparent conducting oxides metamaterials via their effective properties. J Appl Phys. 2017;122:193105. doi: 10.1063/1.5001167
  • Shalaev V. Optical negative-index metamaterials. Nat Photonics. 2007;1:41–48. doi: 10.1038/nphoton.2006.49
  • Sun C, Wade MT, Lee Y, et al. Single-chip microprocessor that communicates directly using light. Nature. 2015;528:534–538. doi: 10.1038/nature16454

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.