78
Views
0
CrossRef citations to date
0
Altmetric
Articles

An efficient SPICE-compatible circuit model for transmission line response excited by an electrically short dipole inside a metallic cavity

, , , &
Pages 1264-1286 | Received 11 Jan 2019, Accepted 04 Apr 2019, Published online: 19 Apr 2019

References

  • Gil I, Fernández GR. Electromagnetic interference reduction in printed circuit boards by using metamaterials: a conduction and radiation impact analysis. J Electromag Waves Appl. 2014;28(3):378–388. doi: 10.1080/09205071.2013.872055
  • Gargama H, Chaturvedi SK, Thakur AK. Experimental validation of reliability-based design optimization models for designing EMI shielding and absorbing structures. J Electromag Waves Appl. 2018;32(2):215–228. doi: 10.1080/09205071.2017.1377120
  • Silva LM, de Carvalho ACT, Araujo JF, et al. Evaluation of the impact of EMI on Ethernet networks from lighting technologies. J Electromag Waves Appl. 2019;33(2):249–259. doi: 10.1080/09205071.2018.1537135
  • Carter NJ. The past, present and future challenges of aircraft EMC. IEEE Electromagn Compat Mag. 2012;1(1):75–78. doi: 10.1109/MEMC.2012.6244953
  • Rambousky R, Nitsch JB, Garbe H. Application of the transmission-line super theory to multiwire TEM-waveguide structures. IEEE Trans Electromagn Compat. 2013;55(6):1311–1319. doi: 10.1109/TEMC.2013.2259631
  • Josifović I, Popović GJ, Ferreira JA. Improving SiC JFET switching behavior under influence of circuit parasitics. IEEE Trans Power Electron. 2012;27(8):3843–3854. doi: 10.1109/TPEL.2012.2185951
  • Vogt A, Brüns HD, Wu Q, et al. A measurement setup for quantification of electromagnetic interference in metallic casings. IEEE Trans Electromagn Compat. 2015;57(6):1354–1364. doi: 10.1109/TEMC.2015.2452295
  • Li P, Yang FR, Xu WY. An efficient approach for analyzing shielding effectiveness of enclosure with connected accessory based on equivalent dipole modeling. IEEE Trans Electromagn Compat. 2016;58(1):103–110. doi: 10.1109/TEMC.2015.2496144
  • Rabat A, Bonnet P, Drissi KEK, et al. Analytical models for electromagnetic coupling of an open metallic shield containing a loaded wire. IEEE Trans Electromagn Compat. 2017;59(5):1634–1637. doi: 10.1109/TEMC.2017.2661579
  • Gong Y, Hao J, Jiang L. Efficient analytical method for the coupling to penetrated transmission line in multiple enclosures based on electromagnetic topology. IET Sci Meas Technol. 2018;12(3):335–342. doi: 10.1049/iet-smt.2017.0363
  • Jiang LH, Hao JH, Gong YF. Electromagnetic coupling to an apertured enclosure via a penetrated transmission line based on electromagnetic topology. J Electromag Waves Appl. 2018;32(5):609–623. doi: 10.1080/09205071.2017.1401489
  • Carpes WP, Ferreira GS, Raizer A, et al. TLM and FEM methods applied in the analysis of electromagnetic coupling. IEEE Trans Magnetics. 2000;36(4):982–985. doi: 10.1109/20.877606
  • Marrocco G, Bardati F. Combined time and frequency-domain modelling of electromagnetic radiation from apertures on resonant cavities by FDTD-MoM method. J Electromag Waves Appl. 2002;16(4):523–539. doi: 10.1163/156939302X00426
  • Edelvik F. A new technique for accurate and stable modeling of arbitrarily oriented thin wires in the FDTD method. IEEE Trans Electromagn Compat. 2003;45(2):416–423. doi: 10.1109/TEMC.2003.811294
  • Konefal T, Dawson JF, Denton AC, et al. Electromagnetic coupling between wires inside a rectangular cavity using multiple-mode-analogous-transmission-line circuit theory. IEEE Trans Electromagn Compat. 2001;43(3):273–281. doi: 10.1109/15.942600
  • Hao J, Jiang L, Gong Y, et al. Analytical method for load response of a transmission line in a double-enclosure with multiple covered apertures. J Electromag Waves Appl. 2017;31(11–12):1115–1133. doi: 10.1080/09205071.2017.1338165
  • Yang K, Ning C, Yin WY. Characterization of near-field coupling effects from complicated three-dimensional structures in rectangular cavities using fast integral equation method. IEEE Trans Electromagn Compat. 2017;59(2):639–645. doi: 10.1109/TEMC.2016.2620481
  • Boutar A, Reineix A, Guiffaut C, et al. An efficient analytical method for electromagnetic field to transmission line coupling into a rectangular enclosure excited by an internal source. IEEE Trans Electromagn Compat. 2015;57(3):565–573. doi: 10.1109/TEMC.2014.2386913
  • Spadacini G, Pignari SA, Marliani F. Closed-form transmission line model for radiated susceptibility in metallic enclosures. IEEE Trans Electromagn Compat. 2005;47(4):701–708. doi: 10.1109/TEMC.2005.857875
  • Vahrenholt V, Leone M. Efficient Foster-type macromodels for rectangular planar interconnections. IEEE Trans Comp Packag Manuf Technol. 2012;2(10):1686–1695. doi: 10.1109/TCPMT.2012.2207901
  • Leone M, Friedrich M, Mantzke A. Efficient broadband circuit-modeling approach for parallel-plane structures of arbitrary shape. IEEE Trans Electromagn Compat. 2013;55(5):941–948. doi: 10.1109/TEMC.2013.2237912
  • Leone M, Mantzke A. A foster-type field-to-transmission line coupling model for broadband simulation. IEEE Trans Electromagn Compat. 2014;56(6):1630–1637. doi: 10.1109/TEMC.2014.2336792
  • Südekum S, Mantzke A, Leone M. Efficient modal network model for nonuniform transmission lines including field coupling. IEEE Trans Electromagn Compat. 2016;58(4):1359–1366. doi: 10.1109/TEMC.2016.2575443
  • Mantzke A, Südekum S, Leone M. Broadband equivalent-circuit model for uniform multiconductor transmission lines. IEEE Trans Electromagn Compat. 2017;59(4):1252–1259. doi: 10.1109/TEMC.2016.2636565
  • Bednarz C, Lange C, Südekum S, et al. Broadband circuit model for wire-interconnection structures based on a MoM-eigenvalue approach. IEEE Trans Electromagn Compat. 2017;59(6):1916–1924. doi: 10.1109/TEMC.2017.2663667
  • Lange C, Leone M. Broadband circuit model for electromagnetic-interference analysis in metallic enclosures. IEEE Trans. Electromagn Compat. 2018;60(2):368–375. doi: 10.1109/TEMC.2017.2709079
  • Tesche FM, Ianoz M, Karlsson T, et al. EMC analysis methods and computational models [M]. New York, NY: John Wiley & Sons; 1997.
  • Zhao Z, Leone M. On the radiated susceptibility of a two-wire transmission line under near-and far-field conditions. IEEE Trans Electromagn Compat. 2018;60(5):1348–1356. doi: 10.1109/TEMC.2017.2779476
  • Computer Simulation Technology (CST). (2016). [online]. Available from: www.cst.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.