197
Views
4
CrossRef citations to date
0
Altmetric
Articles

Virtual fingerprint and two-way ranging-based Bluetooth 3D indoor positioning with RSSI difference and distance ratio

, &
Pages 2155-2174 | Received 12 Jan 2019, Accepted 07 Sep 2019, Published online: 19 Sep 2019

References

  • Sun G, Chen J, Guo W, et al. Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs. IEEE Signal Process Mag. 2005;22:12–23.
  • Harle R. A survey of indoor inertial positioning systems for Pedestrians. IEEE Commun Surv Tutor. 2013;15:1281–1293. doi: 10.1109/SURV.2012.121912.00075
  • Gu Y, Lo A, Niemegeers I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun Surv Tutor. 2009;11:13–32. doi: 10.1109/SURV.2009.090103
  • Liu H, Darabi H, Banerjee P, et al. Survey of Wireless indoor positioning techniques and systems. IEEE Trans Syst Man Cybern C: Appl Rev. 2007;37:1067–1080. doi: 10.1109/TSMCC.2007.905750
  • Suski W, Banerjee S, Hoover A. Using a map of measurement noise to improve UWB indoor position tracking. IEEE Trans Instrumentation and Measurement. 2013;62:2228–2236. doi: 10.1109/TIM.2013.2256714
  • Kim J, Jun H. Vision-based location positioning using augmented reality for indoor navigation. IEEE Trans Consumer Electronics. 2008;54:954–962. doi: 10.1109/TCE.2008.4637573
  • Kassem WI, Strangeways HJ, Ghogho M. Sounding, channel characterization and cellular handset positioning in a large indoor environment at 2 GHz. Proc IET Second Eur Conf Antennas Propag. 2007: 1–6.
  • Luo Y, Law CL. Indoor positioning Using UWB-IR signals in the presence of dense multipath with path overlapping. IEEE Trans Wireless Communications. 2012;11:3734–3743. doi: 10.1109/TWC.2012.081612.120045
  • Wang TQ, Sekercioglu YA, Neild A, et al. Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems. J Light Technol. 2013;31:3302–3308. doi: 10.1109/JLT.2013.2281592
  • Li B, Gallagher T, Dempster AG, et al. How feasible is the use of magnetic field alone for indoor positioning? Proc Int Conf Indoor Position Indoor Navig. 2012: 1–9.
  • Mazuelas S, Bahillo A, Lorenzo RM, et al. Robust indoor positioning provided by real-time RSSI values in unmodified WLAN Networks. IEEE J Sel Top Signal Process. 2009;3:821–831. doi: 10.1109/JSTSP.2009.2029191
  • Benedetto F, Giunta G, Guzzon E. Enhanced TOA-based indoor-positioning algorithm for mobile LTE cellular systems. Proc Workshop Position Navig Commun. 2011: 137–142.
  • Bocquet M, Loyez C, Benlarbi-Delai A. Using enhanced-TDOA measurement for indoor positioning. IEEE Microw Wirel Compon Lett. 2005;15:612–614. doi: 10.1109/LMWC.2005.855392
  • Ben-Shimol Y, Blaunstein N. Localization and positioning of any subscriber in indoor environments on the basis of analysis of joint AOA-TOA signal distribution. Proc IEEE-APS Top Conf Antennas Propag Wirel Commun. 2011: 1420–1423.
  • Poirot JL, Arbid G. Position location: triangulation versus circulation. IEEE Trans Aerosp Electron Syst. 1978;14:48–53. doi: 10.1109/TAES.1978.308577
  • Wang Y, Xu Y, Zhao Y, et al. Bluetooth positioning using RSSI and triangulation methods. Proc IEEE Consumer Commun Netw Conf. 2013: 837–842.
  • Panyov AA, Golovan AA, Smirnov AS. Indoor positioning using Wi-Fi fingerprinting pedestrian dead reckoning and aided INS. Proc Int Symp Inert Sens Syst. 2014: 1–2.
  • Bianchi V, Ciampolini P, De Munari I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Trans Instrum Meas. 2019;68(2):566–575. doi: 10.1109/TIM.2018.2851675
  • Sadowski S, Spachos P. RSSI-Based Indoor localization with the Internet of Things. IEEE Access. 2018;6:30149–30161. doi: 10.1109/ACCESS.2018.2843325
  • Dong F, Chen Y, Liu J, et al. A calibration-free localization solution for Handling signal strength variance. Proc Second Int Workshop Mob Entity localization Track GPS-less Environ LNCS. 2009;5801:79–90. doi: 10.1007/978-3-642-04385-7_6
  • Jin Y AKMMH, Soh W, Van H. SSD: a robust RF location fingerprint addressing mobile devices’ heterogeneity. IEEE Trans Mobile Computing. 2013;12:65–77. doi: 10.1109/TMC.2011.243
  • Kjaergaard MB, Munk CV. Hyperbolic location finger-printing: a calibration-free solution for handling differences in signal strength. Proc Sixth Ann IEEE Int Conf Pervasive Comput Commun. 2008: 110–116.
  • Zhu H, Liu F, Zhou H. Indoor location service based on fingerprinting and distance relative attenuation model. Proc Sixth Int Conf Meas Technol Mechatron Autom. 2014: 341–344.
  • Sigg S, Scholz M, Shi S, et al. RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals. IEEE Trans Mob Comput. 2014;13:907–920. doi: 10.1109/TMC.2013.28
  • Sabek I, Youssef M, Vasilakos AV. ACE: an accurate and efficient multi-entity device-free WLAN localization system. IEEE Trans Mob Comput.. 2015;14:261–273. doi: 10.1109/TMC.2014.2320265
  • Guo Y, Huang K, Jiang N, et al. An Exponential-Rayleigh model for RSS-based device-free localization and tracking. IEEE Trans Mob Comput. 2015;14:484–494. doi: 10.1109/TMC.2014.2329007
  • Sikeridis D, Rimal BP, Papapanagiotou I, et al. Unsupervised crowd-assisted learning enabling location-aware facilities. EEE Internet Things J. 2018;5(6):4699–4713. doi: 10.1109/JIOT.2018.2810808
  • Ou Z, Dong J, Dong S, et al. Utilize signal traces from others? A crowdsourcing perspective of energy saving in cellular data communication. IEEE Trans Mobile Computing. 2014;14:194–207. doi: 10.1109/TMC.2014.2316517
  • Zhang C, Subbu K, Luo J, et al. GROPING: Geomagnetism and cROwdsensing Powered indoor NaviGation. IEEE Trans Mobile Computing. 2015;14:387–400. doi: 10.1109/TMC.2014.2319824
  • Wu C, Yang Z, Liu Y. Smartphones based crowdsourcing for indoor localization. IEEE Trans Mobile Computing. 2015;14:444–457. doi: 10.1109/TMC.2014.2320254
  • Zuo J, Liu S, Xia H, et al. Multi-phase fingerprint map based on interpolation for indoor localization using iBeacons. IEEE Sens J. 2018;18(8):3351–3359. doi: 10.1109/JSEN.2018.2789431
  • Li H. Low-Cost 3D Bluetooth indoor positioning with least square. Wirel Pers Commun. 2014;78:1331–1344. doi: 10.1007/s11277-014-1820-1
  • Decuir J. Introducing Bluetooth smart: part 1: A look at both classic and new technologies. IEEE Consumer Electron Mag. 2014;3:12–18. doi: 10.1109/MCE.2013.2284932
  • Decuir J. Introducing Bluetooth smart: part II: applications and updates. IEEE Consumer Electron Mag. 2014;3:25–29. doi: 10.1109/MCE.2013.2297617
  • De Blasio G, Quesada-Arencibia A, García CR, et al. A protocol-channel-based indoor positioning performance study for Bluetooth low energy. IEEE Access. 2018;6:33440–33450. doi: 10.1109/ACCESS.2018.2837497
  • Baichuan H, Jingbin L, Wei S, et al. A Robust indoor positioning method based on Bluetooth Low energy with Separate channel information. Sensors (Basel). 2019;19(16):1–19.
  • Sharan SR, Sang-Moon L, Minjoong R, et al. Data augmentation schemes for deep learning in an indoor positioning application. Electronis. 2019;8(5):1–19.
  • Ji-Na L. Indoor positioning algorithm Combining Bluetooth low energy plate with pedestrian dead reckoning. J Korea Inst Inf Commun Eng. 2018;22(2):302–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.