595
Views
13
CrossRef citations to date
0
Altmetric
Invited Reviews

Recent progress in perfect absorbers by utilizing metamaterials

, , , &
Pages 1338-1371 | Received 31 Jul 2019, Accepted 12 Sep 2019, Published online: 25 Sep 2019

References

  • Shalaev VM. Optical negative-index metamaterials. Nat Photon. 2007;1:41–48. doi: 10.1038/nphoton.2006.49
  • Navarro-Cia M, Beruete M, Campillo I, et al. Enhanced lens by and near-zero metamaterial boosted by extraordinary optical transmission. Phys Rev B. 2011;83:115112. doi: 10.1103/PhysRevB.83.115112
  • Hwang JS, Kim YJ, Yoo YJ, et al. Switching and extension of transmission response, based on bending metamaterials. Sci Rep. 2017;7:3559. doi: 10.1038/s41598-017-03824-4
  • Kim YJ, Hwang JS, Khuyen BX, et al. Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers. Sci Technol Adv Mater. 2018;19:711–717. doi: 10.1080/14686996.2018.1527170
  • Koschny T, Kafesaki M, Economou EN, et al. Effective medium theory of left-handed materials. Phys Rev Lett. 2004;93:107402. doi: 10.1103/PhysRevLett.93.107402
  • Wu C, Khanikaev AB, Shvets G. Broadband slow light metamaterial based on a double-continuum fano resonance. Phys Rev Lett. 2011;106:107403. doi: 10.1103/PhysRevLett.106.107403
  • Jang MS, Atwater H. Plasmonic rainbow trapping structures for light localization and spectrum splitting. Phys Rev Lett. 2011;107:207401. doi: 10.1103/PhysRevLett.107.207401
  • Thuy VTT, Tung NT, Park JW, et al. Highly dispersive transparency in coupled metamaterials. J Opt. 2010;12:115102. doi: 10.1088/2040-8978/12/11/115102
  • Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science. 2005;308:534. doi: 10.1126/science.1108759
  • Scarborough CP, Jiang ZH, Werner DH, et al. Experimental demonstration of an isotropic metamaterial super lens with negative unity permeability at 8.5 MHz. Appl Phys Lett. 2012;101:014101. doi: 10.1063/1.4732158
  • Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85:3966. doi: 10.1103/PhysRevLett.85.3966
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314:977–980. doi: 10.1126/science.1133628
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100:207402. doi: 10.1103/PhysRevLett.100.207402
  • Wang Y, Sun T, Paudel T, et al. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett. 2012;12:440–445. doi: 10.1021/nl203763k
  • Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010;10:2342–2348. doi: 10.1021/nl9041033
  • Maier T, Bruckl H. Wavelength-tunable microbolometers with metamaterial absorbers. Opt Lett. 2009;34:3012. doi: 10.1364/OL.34.003012
  • Song S, Chen Q, Jin L, et al. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale. 2013;5:9615. doi: 10.1039/c3nr03505k
  • Khuyen BX, Tung BS, Kim YJ, et al. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band. Sci Rep. 2017;7:45151. doi: 10.1038/srep45151
  • Ghamsari BG, Abrahams J, Remillard S, et al. High-temperature superconducting multi-band radio-frequency metamaterial atoms. Appl Phys Lett. 2013;102:013503. doi: 10.1063/1.4774080
  • Yoo YJ, Zheng HY, Kim YJ, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl Phys Lett. 2014;105:041902. doi: 10.1063/1.4885095
  • Beeharry T, Yahiaoui R, Selemani K, et al. A dual layer broadband radar absorber to minimize electromagnetic interference in radomes. Sci Rep. 2018;8:382. doi: 10.1038/s41598-017-18859-w
  • Burgos SP, de Waele R, Polman A, et al. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat Mater. 2010;9:407–412. doi: 10.1038/nmat2747
  • Zhou J, Economon EN, Koschny T, et al. Unifying approach to left-handed material design. Opt Lett. 2006;31:3620. doi: 10.1364/OL.31.003620
  • Ma Y, Chen YQ, Grant J, et al. A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett. 2011;36:945. doi: 10.1364/OL.36.000945
  • Park JW, Tuong PV, Rhee JY, et al. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express. 2013;21:9691. doi: 10.1364/OE.21.009691
  • Alaee R, Albooyeh M, Rockstuhl C. Theory of metasurface based perfect absorbers. J Phys D: Appl Phys. 2017;50:503002. doi: 10.1088/1361-6463/aa94a8
  • Ding F, Cui Y, Ge X, et al. Ultra-broadband microwave metamaterial absorber. Appl Phys Lett. 2012;100:103506. doi: 10.1063/1.3692178
  • Zhang C, Cheng Q, Yang J, et al. Broadband metamaterial for optical transparency and microwave absorption. Appl Phys Lett. 2017;110:143511. doi: 10.1063/1.4979543
  • Zhang C, Yang J, Yuan W, et al. An ultralight and thin metasurface for radar-infrared bi-stealth applications. J Phys D: Appl Phys. 2017;50:444002. doi: 10.1088/1361-6463/aa8ba6
  • Seren HR, Zhang J, Keiser GR, et al. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials. Light Sci Appl. 2016;5:e16078. doi: 10.1038/lsa.2016.78
  • Zhao X, Zhang J, Fan K, et al. Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited]. Photon Res. 2016;4:A16. doi: 10.1364/PRJ.4.000A16
  • Kim YJ, Yoo YJ, Kim KW, et al. Dual broadband metamaterial absorber. Opt Exp. 2015;23:3861. doi: 10.1364/OE.23.003861
  • Liu S, Chen H, Cui TJ. A broadband terahertz absorber using multi-layer stacked bars. Appl Phys Lett. 2015;106:151601. doi: 10.1063/1.4918289
  • Kim YJ, Yoo YJ, Hwang JS, et al. Ultra-broadband microwave metamaterial absorber based on resistive sheets. J Opt. 2017;19:015103. doi: 10.1088/2040-8986/19/1/015103
  • Cheng YZ, Wang Y, Niea Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements. J Appl Phys. 2012;111:044902. doi: 10.1063/1.3684553
  • Kim YJ, Hwang JS, Yoo YJ, et al. Ultrathin microwave metamaterial absorber utilizing embedded resistors. J Phys D Appl Phys. 2017;50:405110. doi: 10.1088/1361-6463/aa82f4
  • Luu DH, Tung BS, Khuyen BX, et al. Multi-band absorption induced by near-field coupling and defects in metamaterial. Optik (Stuttg). 2017;156:811–816. doi: 10.1016/j.ijleo.2017.12.025
  • Cheng Y, Nie Y, Gong R, et al. Multi-band metamaterial absorber using cave-cross resonator. Eur Phys J Appl Phys. 2011;56:31301. doi: 10.1051/epjap/2011110206
  • Khuyen BX, Tung BS, Kim YJ, et al. Miniaturization for ultrathin metamaterial perfect absorber in the VHF band. J Electron Mater. 2017;7; to be published.
  • Khuyen BX, Tung BS, Kim YJ, et al. Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency. Sci Rep. 2018;8:11632. doi: 10.1038/s41598-018-29896-4
  • Dung NV, Tuong PV, Yoo YJ, et al. Perfect and broad absorption by the active control of electric resonance in metamaterial. J Opt. 2015;17:045105. doi: 10.1088/2040-8978/17/4/045105
  • Zhang S, Genov DA, Wang Y, et al. Plasmon-Induced transparency in metamaterials. Phys Rev Lett. 2008;101:047401. doi: 10.1103/PhysRevLett.101.047401
  • Han S, Cong L, Gao F, et al. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials. Ann Phys (Berlin). 2016;528:352–357. doi: 10.1002/andp.201600016
  • Tung BS, Khuyen BX, Dung NV, et al. Multi-band near-perfect absorption via the resonance excitation of dark meta-molecules. Opt Commun. 2015;356:362–367. doi: 10.1016/j.optcom.2015.08.022
  • Liu Y, Zhang YQ, Jin XR, et al. Dual-band infrared perfect absorber for plasmonic sensor based on the electromagnetically induced reflection-like effect. Opt Commun. 2016;371:173–177. doi: 10.1016/j.optcom.2016.03.062
  • Dung NV, Tung BS, Khuyen BX, et al. Simple metamaterial structure enabling triple-band perfect absorber. J Phys D Appl Phys. 2015;48:375103. doi: 10.1088/0022-3727/48/37/375103
  • Tung BS, Khuyen BX, Lam VD, et al. Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial. Sci Rep. 2017;7:11507. doi: 10.1038/s41598-017-11824-7
  • Yi CH, Yoo YJ, Kim YJ, et al. Analysis of a systematic error appearing as a periodic fluctuation in the frequency-domain absorption spectra of metamaterial absorbers. Opt Exp. 2017;25:13296. doi: 10.1364/OE.25.013296
  • Rhee JY, Yoo YJ, Kim KW, et al. Metamaterial-based perfect absorbers. J Electromag Wave Appl. 2014;28:1541–1580. doi: 10.1080/09205071.2014.944273
  • Yoo YJ, Kim YJ, Tuong PV, et al. Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. Opt Exp. 2013;21:32484. doi: 10.1364/OE.21.032484
  • Yi C, Yoo YJ, Kim YJ, et al. Role of Wood’s anomaly in the performance of metamaterial absorbers with periodicity comparable to wavelength. J Phys D Appl Phys. 2016;49:195103. doi: 10.1088/0022-3727/49/19/195103
  • Cheng Y, Yang H, Cheng Z, et al. Perfect metamaterial absorber based on a split-ring-cross resonator. Appl Phys A Mater Sci Process. 2011;102:99–103. doi: 10.1007/s00339-010-6022-4
  • Wood R. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Mag. 1902;4:396. doi: 10.1080/14786440209462857
  • Shelby RA, Smith DR, Nemat-Nasser SC, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl Phys Lett. 2001;78:489–491. doi: 10.1063/1.1343489
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84:4184–4187. doi: 10.1103/PhysRevLett.84.4184
  • Seddon N, Bearpark T. Observation of the inverse doppler effect. Science. 2003;302:1537. doi: 10.1126/science.1089342
  • Cummer SA, Popa BI, Schurig D, et al. Full-wave simulations of electromagnetic cloaking structures. Phys Rev E. 2006;74:036621. doi: 10.1103/PhysRevE.74.036621
  • Sreekanth KV, ElKabbash M, Alapan Y, et al. A multiband perfect absorber based on hyperbolic metamaterials. Sci Rep. 2016;6:26272. doi: 10.1038/srep26272
  • Tung NT, Thuy VTT, Park JW, et al. Left-handed transmission in a simple cut-wire pair structure. J Appl Phys. 2010;107:023530. doi: 10.1063/1.3298505
  • Jin X, Lu Y, Zheng H, et al. Plasmonic electromagnetically-induced transparency in symmetric structures. Opt Exp. 2010;19:11396.
  • Davidson DB. Computational electromagnetics for RF and microwave engineering. 2nd ed. Cambridge: Cambridge University Press; 2010.
  • Taflove A, Hagness S. Computational electrodynamics: the finite difference time domain method. 3rd ed. Norwood: Artech House; 2005.
  • Hessel A, Oliner AA. A new theory of Wood's anomalies on optical gratings. Appl Opt. 1965;4:1275. doi: 10.1364/AO.4.001275
  • Yi C, Rhee JY, Kim KW, et al. In-plane propagation of electromagnetic waves in planar metamaterials. J Korean Phys Soc. 2016;69:448–451. doi: 10.3938/jkps.69.448
  • Li J, Shah CM, Withayachumnankul W, et al. Flexible terahertz metamaterials for dual-axis strain sensing. Opt Lett. 2013;38:2104. doi: 10.1364/OL.38.002104
  • Zhao X, Yang B, Liu J, et al. A multiband flexible terahertz metamaterial with curvature sensing functionality. J Opt. 2016;18:075101. doi: 10.1088/2040-8978/18/7/075101
  • Li J, Shah CM, Withayachumnankul W, et al. Mechanically tunable terahertz metamaterials. Appl Phys Lett. 2013;102:121101. doi: 10.1063/1.4773238
  • Sun XY, Zheng LR, Li XN, et al. Origin of strain-induced resonances in flexible terahertz metamaterials. Chin Phys B. 2016;25:057802. doi: 10.1088/1674-1056/25/5/057802
  • Jiang ZH, Yun S, Toor F, et al. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano. 2011;5:4641. doi: 10.1021/nn2004603
  • Di Falco A, Zhao Y, Al A. Optical metasurfaces with robust angular response on flexible substrates. Appl Phys Lett. 2011;99:163110. doi: 10.1063/1.3655332
  • Yoo YJ, Yi C, Hwang JS, et al. Experimental realization of tunable metamaterial hyper-transmitter. Sci Rep. 2016;6:33416. doi: 10.1038/srep33416
  • Jang Y, Yoo M, Lim S. Conformal metamaterial absorber for curved surface. Opt Exp. 2013;21:24163. doi: 10.1364/OE.21.024163
  • Long C, Yin S, Wang W, et al. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Sci Rep. 2016;6:21431. doi: 10.1038/srep21431
  • Tiep DH, Khuyen BX, Tung BS, et al. Enhanced-bandwidth perfect absorption based on a hybrid metamaterial. Opt Mater Exp. 2018;8:2751. doi: 10.1364/OME.8.002751
  • Hwang JS, Yoo YJ, Kim YJ, et al. Bilayer metamaterial design for switchable electromagnetically-induced transparency-like response. Curr Appl Phys. 2016;16:469–474. doi: 10.1016/j.cap.2016.01.011
  • Chen L, Wei YM, Zang XF, et al. Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci Rep. 2016;6:22027. doi: 10.1038/srep22027
  • Taubert R, Hentschel M, Kästel J, et al. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett. 2012;12:1367–1371. doi: 10.1021/nl2039748
  • Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater. 2009;8:758–762. doi: 10.1038/nmat2495
  • Alzar CLG, Martinez MAG, Nussenzveig P. Classical analog of electromagnetically induced transparency. Am J Phys. 2002;70:37–41. doi: 10.1119/1.1412644
  • Tassin P, Zhang L, Zhao R, et al. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys Rev Lett. 2012;109:187401. doi: 10.1103/PhysRevLett.109.187401
  • Akulshin AM, Barreiro S, Lezama A. Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor. Phys Rev A. 1998;57:2996. doi: 10.1103/PhysRevA.57.2996

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.