198
Views
0
CrossRef citations to date
0
Altmetric
Articles

Perfect metamaterial absorber based on the circular or elliptical cavity with one side open in the terahertz region

ORCID Icon, &
Pages 1460-1470 | Received 24 Aug 2019, Accepted 24 Sep 2019, Published online: 15 Oct 2019

References

  • Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004;305(5685):788–792. doi: 10.1126/science.1096796
  • Tong S, Ren C, Tang W. High-transmission negative refraction in the gradient space-coiling metamaterials. Appl Phys Lett. 2019;114(20):204101. doi: 10.1063/1.5100550
  • Singh R, Plum E, Menzel C, et al. Terahertz metamaterial with asymmetric transmission. Phys Rev B. 2009;80(15):153104. doi: 10.1103/PhysRevB.80.153104
  • Cheng Y, Fan J, Luo H, et al. Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region. Opt Mater Express. 2019;9(3):1365–1376. doi: 10.1364/OME.9.001365
  • Cheng H, Chen S, Yu P, et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl Phys Lett. 2013;103(22):223102. doi: 10.1063/1.4833757
  • Zhu W, Yang R, Fan Y, et al. Controlling optical polarization conversion with Ge 2 Sb 2 Te 5-based phase-change dielectric metamaterials. Nanoscale. 2018;10(25):12054–12061. doi: 10.1039/C8NR02587H
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402. doi: 10.1103/PhysRevLett.100.207402
  • Hao J, Wang J, Liu X, et al. High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett. 2010;96(25):251104. doi: 10.1063/1.3442904
  • Alaee R, Farhat M, Rockstuhl C, et al. A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express. 2012;20(27):28017–28024. doi: 10.1364/OE.20.028017
  • Ma Y, Chen Q, Grant J, et al. A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett. 2011;36(6):945–947. doi: 10.1364/OL.36.000945
  • Appasani B, Prince P, Ranjan RK, et al. A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications. Plasmonics. 2019;14(3):737–742. doi: 10.1007/s11468-018-0852-x
  • Li L, Yang Y, Liang C. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J Appl Phys. 2011;110(6):063702. doi: 10.1063/1.3638118
  • Lu G, Wu F, Zheng M, et al. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Opt Express. 2019;27(4):5326–5336. doi: 10.1364/OE.27.005326
  • Othman MAK, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Express. 2013;21(6):7614–7632. doi: 10.1364/OE.21.007614
  • Huang X, Yang H, Yu S, et al. Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber. J Appl Phys. 2013;113(21):213516. doi: 10.1063/1.4809655
  • Wen QY, Zhang HW, Xie YS, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl Phys Lett. 2009;95(24):241111. doi: 10.1063/1.3276072
  • Park JW, Van Tuong P, Rhee JY, et al. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express. 2013;21(8):9691–9702. doi: 10.1364/OE.21.009691
  • Liu Y, Zhang B, Duan J, et al. Flexible ultrawideband microwave metamaterial absorber with multiple perfect absorption peaks based on the split square ring. Appl Opt. 2018;57(35):10257–10263. doi: 10.1364/AO.57.010257
  • Azad AK, Taylor AJ, Smirnova E, et al. Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Appl Phys Lett. 2008;92(1):011119. doi: 10.1063/1.2829791
  • Vallecchi A, Shamonina E, Stevens CJ. Analytical model of the fundamental mode of 3D square split ring resonators. J Appl Phys. 2019;125(1):014901. doi: 10.1063/1.5053482
  • Chen W, Chen R, Zhou Y, et al. Broadband metamaterial absorber with an in-band metasurface function. Opt Lett. 2019;44(5):1076–1079. doi: 10.1364/OL.44.001076
  • Hoa NTQ, Tuan TS, Hieu LT, et al. Facile design of an ultra-thin broadband metamaterial absorber for C-band applications. Sci Rep. 2019;9(1):468. doi: 10.1038/s41598-018-36453-6
  • Tang C, Niu Q, He Y, et al. Bifunctional resonance effects of classical electromagnetically induced transparency and Fano response using a terahertz metamaterial resonator. Appl Opt. 2019;58(16):4414–4419. doi: 10.1364/AO.58.004414
  • Pan W, Yan Y, Ma Y, et al. A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance. Opt Commun. 2019;431:115–119. doi: 10.1016/j.optcom.2018.09.014
  • Lu X, Xiao Z. Rectangular cavity-based perfect dual-band absorber with wide incidence angle in terahertz region. Appl Phys A. 2018;124(12):834. doi: 10.1007/s00339-018-2265-2
  • Plum E, Zhou J, Dong J, et al. Metamaterial with negative index due to chirality. Phys Rev B. 2009;79(3):035407. doi: 10.1103/PhysRevB.79.035407
  • Li Z, Mutlu M, Ozbay E. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J Optics. 2013;15(2):023001. doi: 10.1088/2040-8978/15/2/023001
  • Peng XY, Wang B, Lai S, et al. Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. Opt Express. 2012;20(25):27756–27765. doi: 10.1364/OE.20.027756
  • Sersic I, Frimmer M, Verhagen E, et al. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. Phys Rev Lett.. 2009;103(21):213902. doi: 10.1103/PhysRevLett.103.213902
  • Shen Z, Xiang T, Wu N, et al. Dual-band electromagnetically induced transparency based on electric dipole-quadrupole coupling in metamaterials. J Phys D Appl Phys. 2018;52(1):015003. doi: 10.1088/1361-6463/aae672

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.