326
Views
10
CrossRef citations to date
0
Altmetric
INVITED REVIEW ARTICLE

Spaceborne radar remote sensing of ocean surfaces: electromagnetic modelling and applications

Pages 1-34 | Received 28 Oct 2019, Accepted 17 Nov 2019, Published online: 23 Dec 2019

References

  • Alfoldi TT, Prout NA. The use of satellite data for monitoring oil spills in Canada. Environment Canada Report; 1982. (Tech. Rep. 3-EC-82-5).
  • Fingas MF, Brown EC. Review of oil spill remote sensing. Spill Sci Technol Bull. 1997;4(4):199–208.
  • Palenzuela JMT, Vilas LG, Cuadrado MS. Use of Asar images to study the evolution of the prestige oil spill off the Galician coast. Int J Remote Sens. 2006;27(9–10):1931–1950.
  • Fingas M. Springer handbook of ocean engineering, Vol. Part D – Offshore Technologies, ch. Oil Spills and Response. Cham, Switzerland: Springer; 2016. p. 1067–1094.
  • Sankaran K, Fortuny-Guasch J. Radar remote sensing for oil spill classification (optimization for enhanced classification). Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference; Dubrovnik, Croatia. 2004. p. 511–514. DOI:10.1109/MELCON.2004.1346979.
  • Bhatt A, Aakash, Sankaran K. Spaceborne ocean monitors: radar imaging of illicit oil-spills. IEEE-INAE Workshop on Electromagnetics IIWE, Trivandrum, India, Indian National Academy of Engineering; 2018.
  • Oliver C, Quegan S. Understanding synthetic aperture radar. Raleigh (North Carolina): SciTech Publishing; 2004.
  • Alpers W. Imaging ocean surface waves by synthetic aperture radar—A review. In: Allan TD, editor. Satellite microwave remote sensing. Chichester: Ellis Horwood Ltd; 1983. p. 107–119.
  • Hasselmann K, Raney RK, Plant WJ, et al. Theory of synthetic aperture radar ocean imaging: A MARSEN view. J Geophys Res. 1985;90(C3):4659–4686.
  • Fan K, Zhang Y, Lin H. Satellite SAR analysis and interpretation of oil spill in the offshore water of Hong Kong. Ann GIS. 2010;16(4):269–275.
  • Skolnik M. Spaceborne radar for the global surveillance of ships over the ocean. IEEE National Radar Conference. Vol. 2; 1997. p. 120–125.
  • Trivero P, Fiscella B, Gomez F, et al. SAR detection and characterization of sea surface slicks. Int J Remote Sens. 1998;19(3):543–548.
  • Berkke C, Solberg AHS. Oil spill detection by satellite remote sensing. Remote Sens Environ. 2005;95(1):1–13.
  • Alpers W. Radar signatures of oil films floating on the sea surface and the Marangoni effect. J Geophys Res. 1988;93(C4):3642–3648.
  • Alpers W, Holt B, Zeng K. Oil spill detection by imaging radars: challenges and pitfalls. Remote Sens Environ. 2017;201:133–147.
  • Fiscella B, Giancaspro A, Nirchio F, et al. Oil spill detection using marine SAR images. Int J Remote Sens. 2000;21(18):3561–3566.
  • Espedal HA, Johannessen OM. Cover: detection of oil spills near offshore installations using synthetic aperture radar (SAR). Int J Remote Sens. 2000;21(11):2141–2144.
  • Guinard N. Radar detection of oil spills. Joint Conference on Sensing of Environmental Pollutants; 1971.
  • Espedal H. Oil spill and its look-alikes in ERS SAR imagery. Earth Obs Remote Sens. 1998;5:94–102.
  • Sankaran K. Protecting oceans from illicit oil spills: environment control and remote sensing using spaceborne imaging radars. J Electromagnet Waves Appl. 2019;33(18). DOI:10.1080/09205071.2019.1685409
  • Immoreev IJ, Taylor JD. Future of radars. IEEE Conference on Ultra Wideband Systems and Technologies; 2002. p. 197–199.
  • Okamoto K, Kobayashi T, Masuko H, et al. Results of experiments using synthetic aperture radar onboard the European remote sensing satellite 1-4, artificial oil pollution detection. J Commun Res Lab. 1996;43(3):327–344.
  • Pavlakis P, Tarchi D, Sieber AJ. On the monitoring of Illicit vessel discharges, a reconnaissance study in the mediterranean sea. Annales des Télécommunications. 2001;56(11-12):700–718.
  • Pavlakis P, Sieber A, Alexandry S. Monitoring oil-spill pollution in the mediterranean with ERS SAR. Earth Obs Quaterly. 1996;52:8–11. ESA, Technical Report.
  • Lombardo P, Oliver CJ. Optimum detection and segmentation of oil-slicks using polarimetric SAR data. IEE Proceedings on Radar, Sonar and Navigation. Vol. 147; 2000. p. 309–320.
  • Lombardo P, Oliver CJ. Optimum detection and segmentation of oil-slicks using polarimetric SAR data. IEE Proc. – Radar, Sonar Navigation. 2000;147(6):309–321.
  • Bertacca M, Berizzi F, Mese ED. A FARIMA-based technique for oil slick and low-wind areas discrimination in sea sar imagery. IEEE Trans Geosci Remote Sens. 2005;43(11):2484–2493.
  • Akkartal A, Sunar F. The use of radar images in oil spill detection. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 2008. p. 271–276.
  • Topouzelis KN. Oil spill detection by SAR images: dark formation detection, feature extraction and classification algorithms. Sensors. 2008;8(10):6642–6659.
  • Kubat M, Holte RC, Matwn S. Machine learning for the detection of oil spills in satellite radar images. Mach Learn. 1998;3(2):195–215.
  • Solberg ARS, Storvik G, Solberg R, et al. Automatic detection of oil spills in ERS SAR images. IEEE Trans Geosci Remote Sens. 1999;37(4):1919–1924.
  • Farte FD, Petrocchi A, Lichtenegger J. Neural networks for oil spill detection using ERS-SAR data. IEEE Trans Geosci Remote Sens. 2000;38(5):2282–2287.
  • Novak LM, Sechtin MB, Cardullo MJ. Studies of target detection algorithms that use polarimetric radar data. IEEE Trans Aerosp Electron Syst. 1989;25(2):150–165.
  • Solberg R, Theophilopoulos N. ENVISYS – a solution for automatic oil spill detection in the mediterranean. Fourth Thematic Conference on Remote Sensing for Marine and Coastal Environments, ERIM. Vol. 1; 1997. p. 3–12.
  • Ulaby FT, Elachi C. Radar polarimetry for geoscience applications. Norwood (MA): Artech House, Inc.; 1990.
  • Elachi C. Spaceborne radar remote sensing: applications and techniques. New York: IEEE Press; 1988.
  • Hühnerfuss H, Alpers W, Gericke A. Classification of sea slicks by multi-frequency radar techniques: the influence of the temperature and of the morphology effect on water wave damping. Proceedings of OCEANS'93, ‘Engineering in Harmony with Ocean’. Vol. 2; 1993. p. 336–341.
  • Elachi C, Zyl JJV. Introduction to the physics and techniques of remote sensing. 2nd ed. Hoboken (NJ): John Wiley & Sons, Inc.; 2006.
  • Campbell JB, Wynne RH. Introduction to remote sensing. 5th ed. New York: The Guilford Press; 2011.
  • Zebker HA, van Zyl JJ, Held DN. Imaging radar polarimetry from wave synthesis. J Geophys Res. 1987;92(B1):683–701.
  • Kennaugh EM. Polarization dependence of RCS – a geometrical interpretation. IEEE Trans Antennas Propag. 1981;29(2):412–413.
  • Santalla V, McCormick GC, Antar YMM. Optimal polarizations and application to meteorological targets. IEEE Trans Antennas Propag. 1999;47(4):767–769.
  • Wheeler GJ. Introduction to microwaves. 2nd ed. Englewood Cliffs (NJ): Printice-Hall, Inc.; 1964.
  • Huynen JR. Phenomenological theory of radar targets [PhD thesis]. The Netherlands: Technical University of Delft; 1970.
  • Hubbert JC, Bringi VN. Studies of the polarimetric covariance matrix. Part II: modeling and polarization errors. J Atmos Oceanic Technol. 2003;20(7):1011–1022.
  • Boerner WM, Kostinski AB, James BD. Application of the polarimetric matched image filter (PMIF) technique to clutter removal in POL-SAR images of the ocean environment. Proceedings of OCEANS'88, ‘A Partnership of Marine Interests’. Vol. 2; 1988. p. 454–461.
  • Mott H. Polarimetric contrast optimization. International Geoscience and Remote Sensing Symposium, IGARSS'95. Quantitative Remote Sensing for Science and Applications. Vol. 3; 1995. p. 2011–2013.
  • Gade M, Alpers W, Bao M, et al. Measurements of the radar backscattering over different oceanic surface films during the SIR-C/X-SAR campaigns. IEEE Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS. Vol. 2; 1996, pp. 860–862.
  • Novak LM, Burl MC. Optimal speckle reduction in polarimetric SAR imagery. Trans Aeros Electron Syst. 1990;26(2):293–305.
  • Barnes RM. Detection of a randomly polarized target [PhD thesis]. Boston, USA: Northeastern University; 1984.
  • Sankaran K. Are you using the right tools in computational electromagnetics? Engineering Reports. 2019;1(3):1–19. DOI:10.1002/eng2.12041.
  • Howard D, Schroeder J. Multiscale models for target detection and background discrimination in synthetic aperture radar imagery. Digit Signal Process. 1999;9(3):149–161.
  • Schroeder J, Howard D, Gunawardena A. Multiscale modelling for target detection in complex synthetic aperture radar imagery. IEEE, Information, Decision and Control Proceedings, Adelaide, Australia, February 1999. p. 77–82.
  • Sankaran K. Recent trends in computational electromagnetics for defence applications. Defence Science Journal. 2019;69(1):65–73. DOI:10.14429/dsj.69.13275.
  • Uchida K, Yoon K-Y, Kuga Y, et al. FVTD analysis of electromagnetic wave scattering by rough surface. IGARSS'98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. Vol. 4, July 1998. p. 2292–2294.
  • Xu X, Brekke C, Doulgeris A. Numerical analysis of microwave scattering from layered sea ice based on the finite element method. Remote Sens (Basel). 2018 Aug;10:1–16.
  • Fumeaux C, Baumann D, Sankaran K, et al. The finite-volume time-domain method for 3-D solutions of Maxwell's equations in complex geometries: a review. Proceedings of the European Microwave Association. Vol. 3, EuMA; 2007. p. 136–146.
  • Fumeaux C, Almpanis G, Sankaran K. Finite-volume time-domain modeling of the mutual coupling between dielectric resonator antennas in array configurations. The Second European Conference on Antennas and Propagation (EuCAP), IET; 2007. p. 1–4. DOI:10.1049/ic.2007.0909.
  • Kaufmann T, Sankaran K, Fumeaux C, et al. A review of perfectly matched absorbers for the finite-volume time-domain method. Appl Comput Electromagnet Soc. 2008;23(3):184–192.
  • Sankaran K, Kaufmann T, Fumeaux C, et al. Different perfectly matched absorbers for conformal time-domain method: a finite-volume time-domain perspective. 23rd Annual Review of Progress in Applied Computational Electromagnetics, ACES; 2007. p. 1712–1718.
  • Sankaran K, Fumeaux C, Vahldieck R. Finite-volume Maxwellian absorbers on unstructured grid. IEEE MTT-S International Microwave Symposium Digest; San Francisco, California, US. 2006. p. 169–172. DOI:10.1109/MWSYM.2006.249422.
  • Sankaran K, Fumeaux C, Vahldieck R. Radial absorbers for conformal time-domain methods: a solution to corner problems in mesh truncation. IEEE/MTT-S International Microwave Symposium; Honolulu, Hawaii, USA. 2007. p. 709–712. DOI:10.1109/MWSYM.2007.380019.
  • Sankaran K, Fumeaux C, Vahldieck R. An investigation of the accuracy of finite-volume radial domain truncation technique. Workshop on Computational Electromagnetics in Time Domain, IEEE; Perugia, Italy. 2007. p. 1–4. DOI:10.1109/CEMTD.2007.4373520.
  • Sankaran K, Fumeaux C, Vahldieck R. Hybrid PML-ABC truncation techniques for finite-volume time-domain simulations. Proceedings of the Asia-Pacific Microwave Conference, APMC; Yokohama, Japan. 2006. p. 949–952. DOI:10.1109/APMC.2006.4429569.
  • Sankaran K, Fumeaux C, Vahldieck R. Split and unsplit finite-volume absorbers: formulation and performance comparison. Proceedings of the European Microwave Conference, EuMA; Manchester, UK. 2006. p. 17–20. DOI:10.1109/EUMC.2006.281170.
  • Aakash, Bhatt A, Sankaran K. Transcending limits: recent trends & challenges in computational electromagnetics. IEEE-INAE Workshop on Electromagnetics IIWE, Trivandrum, India, Indian National Academy of Engineering; 2018.
  • Aakash, Bhatt A, Sankaran K. Algebraic topological method: an alternative modelling tool for electromagnetics. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC); New Delhi, India. March 2019. DOI:10.23919/URSIAP-RASC.2019.8738433.
  • Sankaran K, Sairam B. Modelling of nanoscale quantum tunnelling structures using algebraic topology method. AIP Conference Proceedings. Vol. 1953; 2018. p. 140105–1–140105–4. DOI:10.1063/1.5033280.
  • Sankaran K. Beyond DIV, CURL and GRAD: modelling electromagnetic problems using algebraic topology. J Electromagn Waves Appl. 2017;31(2):121–149. DOI:10.1080/09205071.2016.1257397.
  • Aakash, Bhatt A, Sankaran K. How to model electromagnetic problems without using vector calculus and differential equations? IETE Journal of Education. 2018;59(2):85–92. DOI:10.1080/09747338.2018.1554456.
  • Ziemke T. Radar image segmentation using recurrent artificial neural networks. Artificial Neural Networks in Computer Vision, Pattern Recognition Letters; 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.