220
Views
1
CrossRef citations to date
0
Altmetric
Articles

Microwave absorber based on encapsulated expanded graphite-silicone composite as meta-“atom” for X-band application

Pages 1444-1459 | Received 16 Sep 2019, Accepted 22 Apr 2020, Published online: 13 May 2020

References

  • Vinoy KJ, Jha RM. Trends in radar absorbing materials technology. Sadhana. 1995;20(5):815–850. doi: 10.1007/BF02744411
  • Costa F, Genovesi S, Monorchio A. A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays. Progr Electromagnet Res. 2012;126:317–332. doi: 10.2528/PIER12012904
  • Wang L-l, Liu S-b, Zhang H-f, et al. High-impedance surface-based flexible broadband absorber. J Electromagnet Waves Appl. 2017;31(13):1216–1231. doi: 10.1080/09205071.2017.1326850
  • Kundu D, Mohan A, Chakrabarty A. Single-layer wideband microwave absorber using array of crossed dipoles. IEEE Antennas Wirel Propag Lett. 2016;15:1589–1592. doi: 10.1109/LAWP.2016.2517663
  • Saville P. Review of radar absorbing materials. No. DRDC-TM-2005-003. Defence Research and Development Atlantic Dartmouth (Canada); 2005. p. 5–15.
  • Wang B-Y, Liu S-B, Bian B-R, et al. A novel ultrathin and broadband microwave metamaterial absorber. J Appl Phys. 2014;116(9):094504. doi: 10.1063/1.4894824
  • Watts CM, Liu X, Padilla WJ. Metamaterial electromagnetic wave absorbers. Adv Mater. 2012;24(23):OP98–OP120.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402. doi: 10.1103/PhysRevLett.100.207402
  • Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys. 2012;111(6):4. doi: 10.1063/1.3688435
  • Qing Y, Min D, Zhou Y, et al. Graphene nanosheet-and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon. 2015;86:98–107. doi: 10.1016/j.carbon.2015.01.002
  • Saib A, Bednarz L, Daussin R, et al. Carbon nanotube composites for broadband microwave absorbing materials. IEEE Trans Microw Theory Tech. 2006;54(6):2745–2754. doi: 10.1109/TMTT.2006.874889
  • Zou T, Zhao Naiqin, Shi Chunsheng, et al. Microwave absorbing properties of activated carbon fibre polymer composites. Bull Mater Sci. 2011;34(1):75–79. doi: 10.1007/s12034-011-0042-3
  • Yun S, Kirakosyan A, Surabhi S, et al. Controlled morphology of MWCNTs driven by polymer-grafted nanoparticles for enhanced microwave absorption. J Mater Chem C. 2017;5(33):8436–8443. doi: 10.1039/C7TC02892J
  • Liu Z, Bai G, Huang Y, et al. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. The J Phys Chem C. 2007;111(37):13696–13700. doi: 10.1021/jp0731396
  • Chen C-Y, Pu NW, Liu YM, et al. Microwave absorption properties of holey graphene/silicone rubber composites. Compos Part B: Eng. 2018;135:119–128. doi: 10.1016/j.compositesb.2017.10.001
  • Chung DDL. A review of exfoliated graphite. J Mater Sci. 2016;51(1):554–568. doi: 10.1007/s10853-015-9284-6
  • Mishra M, Singh AP, Dhawan SK. Expanded graphite–nanoferrite–fly ash composites for shielding of electromagnetic pollution. J Alloys Compd. 2013;557:244–251. doi: 10.1016/j.jallcom.2013.01.004
  • Valentini M, Piana F, Pionteck J, et al. Electromagnetic properties and performance of exfoliated graphite (EG)–thermoplastic polyurethane (TPU) nanocomposites at microwaves. Compos Sci Technol. 2015;114:26–33. doi: 10.1016/j.compscitech.2015.03.006
  • Zhao T, Jin W, Ji X, et al. Synthesis of sandwich microstructured expanded graphite/barium ferrite connected with carbon nanotube composite and its electromagnetic wave absorbing properties. J Alloys Compd. 2017;712:59–68. doi: 10.1016/j.jallcom.2017.04.070
  • Hung W-C, Wu K-H, Lyu D-Y, et al. Preparation and characterization of expanded graphite/metal oxides for antimicrobial application. Mater Sci Eng: C. 2017;75:1019–1025. doi: 10.1016/j.msec.2017.03.043
  • Valapa RB, Pugazhenthi G, Katiyar V. Effect of graphene content on the properties of poly (lactic acid) nanocomposites. RSC Adv. 2015;5(36):28410–28423. doi: 10.1039/C4RA15669B
  • Guohua C. Exfoliation of graphite flake and its nanocomposites. Carbon. 2003;41:579. doi: 10.1016/S0008-6223(02)00339-1
  • Engen GF, Hoer CA. Thru-reflect-line: an improved technique for calibrating the dual six-port automatic network analyzer. IEEE Trans Microw Theory Tech. 1979;27(12):987–993. doi: 10.1109/TMTT.1979.1129778
  • Rytting D. Network analyzer error models and calibration methods. White Paper; September 1998.
  • Zhang XF, Guan PF, Dong XL. Multidielectric polarizations in the core/shell Co/graphite nanoparticles. Appl Phys Lett. 2010;96(22):223111. doi: 10.1063/1.3446868
  • Bowler N. Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite. IEEE Trans Dielectr Electr Insul. 2006;13(4):703–711. doi: 10.1109/TDEI.2006.1667727
  • Ohlan A, Singh K, Chandra A, et al. Conjugated polymer nanocomposites: synthesis, dielectric, and microwave absorption studies. J Appl Phys. 2009;106(4):044305. doi: 10.1063/1.3200958
  • Matsumoto M, Miyata Y. Complex permittivity based on equivalent circuit model for polymer/metal composite. Frequency dependence of permittivity as function of concentration. IEEE Trans Dielectr Electr Insul. 1999;6(1):27–34. doi: 10.1109/94.752006
  • Liu J, Cao M-S, Luo Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl Mater Interfaces. 2016;8(34):22615–22622. doi: 10.1021/acsami.6b05480
  • Lu M-M, Yuan J, Wen B, et al. Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism. Chin Phys B. 2013;22(3):037701. doi: 10.1088/1674-1056/22/3/037701
  • Wang Z, Luo J, Zhao G. Dielectric and microwave attenuation properties of graphene nanoplatelet–epoxy composites. AIP Adv. 2014;4(1):017139. doi: 10.1063/1.4863687
  • Zhang X, Liang G, Chang J, et al. The origin of the electric and dielectric behavior of expanded graphite–carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss. Carbon. 2012;50(14):4995–5007. doi: 10.1016/j.carbon.2012.06.027
  • Meng F, Wang H, Huang F, et al. Graphene-based microwave absorbing composites: a review and prospective. Compos Part B: Eng. 2018;137:260–277. doi: 10.1016/j.compositesb.2017.11.023
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71(3):036617. doi: 10.1103/PhysRevE.71.036617
  • Li L, Wang J, Du H, et al. A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Adv. 2015;5(1):017147. doi: 10.1063/1.4907050
  • Nguyen TT, Lim S. Design of metamaterial absorber using eight-resistive-arm cell for simultaneous broadband and wide-incidence-angle absorption. Sci Rep. 2018;8:6633. doi: 10.1038/s41598-018-25074-8
  • Lee D, Hwang JG, Lim D, et al. Incident angle- and polarization-insensitive metamaterial absorber using circular sectors. Sci Rep. 2016;6:27155. doi: 10.1038/srep27155
  • Yahiaoui R, Ouslimani HH. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber. J App Phys. 2017;122:093104. doi: 10.1063/1.4989933
  • Zhai H, Zhang B, Zhang K, et al. A stub-loaded reconfigurable broadband metamaterial absorber with wide-angle and polarization stability. J Electromagn Waves Appl. 2017;31(4):447–459. doi: 10.1080/09205071.2017.1293567
  • Al-Badri KS, Cinar A, Kose U, et al. Monochromatic tuning of absorption strength based on angle-dependent closed-ring resonator-type metamaterial absorber. IEEE Antennas Wirel Propag Lett. 2016;16:1060–1063. doi: 10.1109/LAWP.2016.2620599
  • Zhang F, Feng S, Qiu K, et al. Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett. 2015;106(9):091907. doi: 10.1063/1.4914502
  • Rytting D. Network analyzer error models and calibration methods. White Paper; September 1998.
  • Gogoi DJ, Bhattacharyya NS. Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance. J Appl Phys. 2017;122(17):175106. doi: 10.1063/1.4995519
  • Gogoi DJ, Bhattacharyya NS. Microwave metamaterial absorber based on aqueous electrolyte solution for X-band application. J Appl Phys. 2019;125(12):125107. doi: 10.1063/1.5083806
  • Gogoi DJ, Bhattacharyya NS. Metasurface absorber based on water meta “molecule” for X-band microwave absorption. J Appl Phys. 2018;124(7):075106. doi: 10.1063/1.5041450

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.