142
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Floquet-Bloch waves in magnetophotonic crystals with transverse magnetic field

ORCID Icon, & ORCID Icon
Pages 1667-1679 | Received 25 Sep 2019, Accepted 03 Jun 2020, Published online: 18 Jun 2020

References

  • Yeh P, Yariv A, Chi-Shain H. Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am. 1977;67:423–438. doi: 10.1364/JOSA.67.000423
  • Yariv A, Yeh P. Photonics. Optical electronics in modern communications. New York: Oxford University press; 2007.
  • Bass FG, Bulgakov AA. Kinetic and electrodynamic phenomena in classical and quantum semiconductor. New York: Nova Science Publishers; 1997.
  • Lekner J. Light in periodically stratified media. J Opt Soc Am. 1994;A11:2892–2899. doi: 10.1364/JOSAA.11.002892
  • Sakaguchi S, Sugimoto N. Transmission properties of multilayer films composed of magneto-optical and dielectric materials. J Lightwave Technol. 1999;17:1087–1092. doi: 10.1109/50.769312
  • Wu L, He S, Shen L. Band structure for a one-dimensional photonic crystal containing left-handed materials. Phys Rev B. 2003;235103 B67.
  • Shen H, Wang Z, Yuxin WY, et al. One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RCS Adv. 2016;6:4505.
  • Cui L, Li X, Jun Chen J, et al. One-dimensional photonic crystals bound by light. Phys Rev A. 2017;96:023833. doi: 10.1103/PhysRevA.96.023833
  • Dalmis R, Azem F NA, Birlik I, et al. Sio2/TiO2 one-dimensional photonic crystals doped with Sm and Ce rare-earth elements for enhanced structural colors. Appl Surf Sci. 2019;475:94–101. doi: 10.1016/j.apsusc.2018.12.234
  • Skorobogatiy M, Yang J. Fundamentals of photonic crystal guiding. Cambridge university press; 2009.
  • Gong Q, Hu X. Photonic crystals: principles and applications. CRC Press; 2013.
  • Angelini A. Photon management assisted by surface waves on photonic crystals. Springer; 2017.
  • Odarenko EN, Shmat’ko AA. Slow-wave regimes of the photonic crystal waveguides. Proceedings of the International Conference on Laser and Fiber-Optical Networks Modeling. Kharkiv, Ukraine: IEEE. 2011 Sept 5–8.
  • Odarenko EN, Sashkova YV, Shmat’ko AA. Localized field enhancement in slow-wave modes of modified Bragg waveguide. Proceedings of the Microwaves, Radar and Remote Sensing Symposium. Kyiv, Ukraine: IEEE. 2017 Aug 29–31: 147–150.
  • Bailey AG, Smirnova EI E, Earley LM, et al. Photonic band gap structures for millimeter-wave traveling wave tubes. Proc SPIE. 2005;6120:612004. doi: 10.1117/12.649396
  • Letizia R, Mineo M, Paoloni C. Photonic crystal structures for THz vacuum electron devices. IEEE Trans Electron Dev. 2015;62:178–183. doi: 10.1109/TED.2014.2366639
  • Odarenko EN, Shmat’ko AA. Photonic crystal and Bragg waveguides for THz electron devices. Proceedings of the International Conference on Laser and Fiber-Optical Networks Modeling; 2016 Sept 12-15; Odessa, Ukraine: IEEE; 2016. p. 53–55.
  • Odarenko EN, Shmat’ko AA. Novel THz sources with profiled focusing field and photonic crystal electrodynamic systems. Proceedings of the International Conference on Modern Problems of Radio Engineering, Telecommucations, and Computer Science; 2016 Feb 23–26; Lviv-Slavsko, Ukraine: IEEE; 2016. p. 345–347.
  • Odarenko EN, Sashkova YV, Shmat’ko AA, et al. Analysis of slow wave modes in modified photonic crystal waveguides using the MPB package. Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory; 2018 July 2–5; Kyiv, Ukraine: IEEE; 2018. p. 164–167.
  • Sprung DWL, Wu H, Martorell J. Scattering by a finite periodic potential. Am J Phys. 1993;61:1118. doi: 10.1119/1.17306
  • Brillouin L. Wave propagation in periodic structures. New York: McGraw-Hill Book Company; 1946.
  • Stoker JJ. Nonlinear vibrations. New York: Waverly Press; 1950.
  • Yakubovich VA, Starzhinskii VM. Linear differential equations with periodic coefficients. New York: Wiley; 1975.
  • Eastham MSP. The spectral theory of periodic differential equations. Edinburgh: Scottish Academic Press; 1973.
  • Magnus W, Winkler S. Hill’s equation. Mineola, New York: Dover Publications; 2004.
  • Nurligareev JK, Sychugov VA. Propagation of light in a one-dimensional photonic crystal: analysis by the Floquet-Bloch function method. Quantum Electron. 2008;38:452–461. doi: 10.1070/QE2008v038n05ABEH013653
  • Morozov GV, Sprung DWL. Floquet-Bloch waves in one-dimensional photonic crystals. Europhys Lett. 2011;96:54005. doi: 10.1209/0295-5075/96/54005
  • Nurligareev JK. Floquet-Bloch waves in bound one-dimensional photonic crystals. J Surf Invest. 2011;5:193–208. doi: 10.1134/S1027451011020133
  • Morozov GV, Sprung DWL. Transverse-magnetic-polarized Floquet-Bloch waves in one-dimensional photonic crystals. J Opt Soc Am. 2012;B29:3231–3239. doi: 10.1364/JOSAB.29.003231
  • Morozov GV, Sprung DWL. Band structure analysis of an analytically solvable Hill equation with continuous potential. J Opt. 2015;17:035607. doi: 10.1088/2040-8978/17/3/035607
  • Inoue M, Arai K, Fujii T, et al. One-dimensional magnetophotonic crystals. J Appl Phys. 1999;85:5768–5770. doi: 10.1063/1.370120
  • Lyubchanskii IL, Dadoenkova NN, Lyubchanskii MI, et al. Magnetic photonic crystals. J Phys D: Appl Phys. 2003;36:277–287. doi: 10.1088/0022-3727/36/18/R01
  • Shmat’ko AA, Mizernik VN, Odarenko EN, et al. Dispersion properties of a one-dimensional anisotropic magnetophotonic crystal with a gyrotropic layer. Proceedings of the 7th International Conference on Advanced Optoelectronics and Lasers; 2016 Sept 12–15. Odessa: IEEE; p. 126–128.
  • Shramkova OV. Transmission properties of ferrite-semiconductor periodic structure. Prog Electromagn Res. 2009;7:71–85. doi: 10.2528/PIERM09041305
  • Malyuskin AV, Goryushko DN, Shmat’ko AA, et al. Scattering of a wave beam by inhomogeneous anisotropic chiral layer. Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory; 2002 Sept 10–13; Kyiv, Ukraine: IEEE; 2002. p. 566–568.
  • Shmat’ko AA, Mizernik VN, Odarenko EN, et al. Bragg reflection and transmission of light by one-dimensional gyrotropic magnetophotonic crystal). Proceedings of the International Conference on Advanced Information and Communication Technologies; 2017 July 4–7. Lviv, Ukraine: IEEE; p. 232–236.
  • Fu JX, Liu RJ, Li ZY. Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields. EPL. 2010;89:64003. doi: 10.1209/0295-5075/89/64003
  • Shmat’ko AA, Mizernik VN, Odarenko EN, et al. Dispersion properties of TM and TE modes of gyrotropic magnetophotonic crystals. In: Vakhrushev A, Theoretical foundations and applications of photonic crystals. InTech; 2018. p. 47–69.
  • Shmat’ko AA, Mizernik VN, Odarenko EN. Surface and bulk modes of magnetophotonic crystals. Proceedings of the 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering; 2018 Feb. 20–24; Lviv-Slavsko: IEEE; p. 436–440.
  • Wang Z, Fan S. Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett. 2005;30:1989. doi: 10.1364/OL.30.001989
  • Yu Z, Wang Z, Fan S. One-way total reflection with one-dimensional magneto-optical photonic crystals. Appl Phys Lett. 2007;90:121133. doi: 10.1063/1.2716359
  • Khanikaev AB, Steel MJ. Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices. Opt Express. 2009;17:5265. doi: 10.1364/OE.17.005265
  • Caballero B, Garcia-Martin A, Cuevas JC. Faraday effect in hybrid magneto-plasmonic photonic crystals. Opt Express. 2015;23:242823. doi: 10.1364/OE.23.022238
  • Guo Z, Wu F, Ch X, et al. Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect. J Appl Phys. 2018;124:103104. doi: 10.1063/1.5042096
  • Gaiyan B, Lijuan D, Shuai F, et al. Faraday effect in one-dimensional magneto-optical photonic crystals. Opt Mater (Amst). 2012;35:252–256. doi: 10.1016/j.optmat.2012.08.015
  • Chernovtsev SV, Belozorov DP, Tarapov SI. Magnetically controllable 1D magnetophotonic crystal in millimetre wavelength band. J Phys D: Appl Phys. 2007;40(2):295–299. doi: 10.1088/0022-3727/40/2/001
  • Abdi-Ghaleh R, Namdar A. Circular polarization bandpass filters based on one-dimensional magnetophotonic crystals. J Mod Opt. 2013;60(19):1619–1626. doi: 10.1080/09500340.2013.850540
  • Aplet LJ, Carson JW. A Faraday effect optical isolator. Appl Opt. 1964;3(4):544–545. doi: 10.1364/AO.3.000544
  • Kato H, Matsushita T, Takayama A, et al. Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices. IEEE Trans Magn. 2002;38(5):3246–3248. doi: 10.1109/TMAG.2002.802511
  • Rizzo R, Alvaro M, Danz N, et al. Bloch surface wave enhanced biosensor for the direct detection of Angiopoietin-2 tumor biomarker in human plasma. Biomed Opt Express. 2018;9(2):529–542. doi: 10.1364/BOE.9.000529
  • Dissanayake N, Levy M, Chakravarty A, et al. Magneto-photonic crystal optical sensors with sensitive covers. Appl Phys Lett. 2011;99:091112. doi: 10.1063/1.3633344
  • Mors P, Feshbach P. Methods of theoretical physics. Path I. New York: McGraw Hill; 1953.
  • Lax B, Button KJ. Microwave ferrites and ferrimagnetics. New York: McGraw-Hill; 1962.
  • Gurevich AG. Ferrites at microwave frequencies. New York: Consultans Bureau; 1963.
  • Epstein PS. Theory of wave propagation in a gyromagnetic medium. Rev Mod Phys. 1956;28:3–17. doi: 10.1103/RevModPhys.28.3
  • Kramer HA. Das Eigenwertproblrm im eindimentionalen periodishen kraftfelde. Physica. 1935;2:483–490. doi: 10.1016/S0031-8914(35)90118-5
  • Floquet G. Sur les equations differentielles lineaires a coefficients periodiques. Annales Scientifiques de L’Ecole Normale Superieure. 1883;12:47–88. doi: 10.24033/asens.220
  • Wu L, He S, Shen L. Band structure for a one-dimensional photonic crystal containing left-handed materials. Phys Rev. 2003;B67:235103. doi: 10.1103/PhysRevB.67.235103
  • Zenneck J. Uber die Fortpflanzung ebener elektromagnetischerWellen langs einer ebenen Lieterflache und ihre Beziehung zur drahtlosen Telegraphie. Ann Phys Lpz. 1907;23:846–866. doi: 10.1002/andp.19073281003
  • Sommerfeld A. Ueber die Fortpflanzung elektrodynamischer Wellen langs eines Drahtes. Ann Phys (N Y). 1899;303(2):233–290. doi: 10.1002/andp.18993030202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.