111
Views
3
CrossRef citations to date
0
Altmetric
Articles

Tunable optical response of Fe-Ag nanoparticles in core-Shell nanostructures

, &
Pages 1888-1898 | Received 24 May 2020, Accepted 06 Jul 2020, Published online: 16 Jul 2020

References

  • Khan K, Rehman S, Rahman HU, et al. Synthesis and application of magnetic nanoparticles. Nanomagnetism. 2014.
  • Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev.. 2008;60:1252–1265. doi: 10.1016/j.addr.2008.03.018
  • Kreibig U, Vollmer M. Optical properties of metal clustersSpringer Science & Business Media; 2013.
  • Maier SA. Plasmonics: fundamentals and applications. Springer Science & Business Media; 2007.
  • Jain PK, Huang X, El-Sayed IH, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res.. 2008;41:1578–1586. doi: 10.1021/ar7002804
  • Chen H, Shao L, Li Q, et al. Gold nanorods, and their plasmonic properties. Chem Soc Rev. 2013;42:2679–2724. doi: 10.1039/C2CS35367A
  • Amendola V, Bakr OM, Stellacci F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics. 2010;5:85–97. doi: 10.1007/s11468-009-9120-4
  • Hooshmand N, Jain PK, El-Sayed MA. Plasmonic spheroidal metal nanoshells showing larger tunability and stronger near fields than their spherical counterparts: an effect of enhanced plasmon coupling. J Phys Chem Lett. 2011;2:374–378. doi: 10.1021/jz200034j
  • Armelles G, Dmitriev A. Focus on magnetoplasmonics. New J Phys. 2014;16:045012. doi: 10.1088/1367-2630/16/4/045012
  • Bhatia P, Verma SS, Sinha MM. Size-dependent optical response of complex CoFe@Ag & CoFe@Au core-shell nanospheres. Chem Phys Lett. 2020;745:137272. doi: 10.1016/j.cplett.2020.137272
  • Liu M, Guyot-Sionnest P. Synthesis and optical characterization of Au-Ag core-shell nanorod. J Phys Chem B. 2004;108:5882–5888. doi: 10.1021/jp037644o
  • Mann D, Nascimento-Duplat D, Keul H, et al. The influence of particle size distribution and shell imperfections on the plasmon resonance of Au and Ag nanoshells. Plasmonics. 2017;12:929–945. doi: 10.1007/s11468-016-0345-8
  • Bhatia P, Verma SS, Sinha MM. Optical properties simulation of magneto-plasmonic alloys nanostructures. Plasmonics. 2019;14:611–622. doi: 10.1007/s11468-018-0839-7
  • Bhatia P, Verma SS, Sinha MM. Tuning the optical properties of Fe-Au core-shell nanoparticles with spherical and spheroidal nanostructures. Phys Lett A. 2019;383:2542–2550. doi: 10.1016/j.physleta.2019.05.009
  • Fu Q, Sun W. Mie theory for light scattering by a spherical particle in an absorbing medium. Appl Opt. 2001;40:1354–1361. doi: 10.1364/AO.40.001354
  • Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A. 1994;11:1491–1499. doi: 10.1364/JOSAA.11.001491
  • Gedney SD. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth Lect Comput Electromagnet. 2011;6:1–250. doi: 10.2200/S00316ED1V01Y201012CEM027
  • Draine BT, Flatau PJ. User guide for the discrete dipole approximation code DDSCAT 7.3. arXiv preprint arXiv:1305.6497. 2013.
  • Johnson PB, Christy RW. Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd. Phys Rev B. 1974;9:5056–5070. doi: 10.1103/PhysRevB.9.5056
  • Draine BT, Flatau PJ. Discrete-dipole approximation for periodic targets: theory and tests. J Opt Soc Am A. 2008;25:2693–2703. doi: 10.1364/JOSAA.25.002693
  • Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6:4370–4379. doi: 10.1103/PhysRevB.6.4370
  • Lee KS, El-Sayed MA. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B. 2005;109:20331–20338. doi: 10.1021/jp054385p
  • Zhang C, Chen BQ, Li ZY, et al. Surface plasmon resonance in the bimetallic core-shell nanoparticles. J Phys Chem C. 2015;119:16836–16845. doi: 10.1021/acs.jpcc.5b04232
  • Sun C. On the plasmonic properties of Ag@SiO2@graphene core-shell nanostructures. Plasmonics. 2018;13:1671–1680. doi: 10.1007/s11468-017-0676-0
  • Zhang JZ. Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J Phys Chem Lett. 2010;1:686–695. doi: 10.1021/jz900366c
  • Cortie MB, McDonagh AM. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011;111:3713–3735. doi: 10.1021/cr1002529
  • Rahaman MH, Kemp BA. Analytical model of plasmonic resonance from multiple core-shell nanoparticles. Opt Eng. 2017;56:121903. doi: 10.1117/1.OE.56.12.121903
  • Mohapatra S, Mishra YK, Avasthi DK, et al. Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett. 2008;92:103105. doi: 10.1063/1.2894187
  • Baqir MA, Choudhury PK, Naqvi QA, et al. On the scattering and absorption by the SiO2-VO2 core-shell nanoparticles under different thermal conditions. IEEE Access. 2020;8:84850–84857. doi: 10.1109/ACCESS.2020.2992499

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.