379
Views
9
CrossRef citations to date
0
Altmetric
Articles

Grease oil humidity sensor by using metamaterial

, , ORCID Icon, , , & ORCID Icon show all
Pages 2488-2498 | Received 19 Feb 2020, Accepted 14 Sep 2020, Published online: 22 Sep 2020

References

  • Tian L, Zhao K, Zhao S, et al. (2011, July). Investigation of lubricating grease using terahertz transmission spectroscopy. In Proceedings of 2011 International Conference on Electronics and Optoelectronics (Vol. 4, pp. V4-254). IEEE.
  • Donahue CJ. Lubricating grease: A chemical primer. J Chem Educ. 2006;83(6):862. doi: 10.1021/ed083p862
  • Cyriac F, Lugt PM, Bosman R, et al. Impact of water on EHL film thickness of lubricating greases in rolling point contacts. Tribol Lett. 2016;61(3):23. doi: 10.1007/s11249-016-0642-6
  • Istry A. (2005). Performance of lubricating greases in the presence of water. In NLGI Spokesman-Including NLGI Annual Meeting-National Lubricating Grease Institute (Vol. 68, No. 12, pp. 8-15). [Kansas City, Mo.] National Lubricating Grease Institute.
  • Cyriac F, Lugt PM, Bosman R. Impact of water on the rheology of lubricating greases. Tribology Transactions. 2016;59(4):679–689. doi: 10.1080/10402004.2015.1107929
  • Dittes N. (2013). Water in grease condition monitoring literature review.
  • Duncanson M. (2005). Machinery lubrication: detecting and controlling water in oil. Machinery Lubrication.
  • Johnson M, Spurlock M. Strategic oil analysis: instrument-based on-site lubricant analysis. Tribol Lubr Technol. 2010;66(7):26.
  • Stellman CM, Ewing KJ, Bucholtz F, et al. Monitoring the degradation of a synthetic lubricant oil using infrared absorption, fluorescence emission and multivariate analysis: a feasibilty study. Tribol Lubr Technol. 1999;55(10):42.
  • Besser C, Dörr N, Novotny-Farkas F, et al. Comparison of engine oil degradation observed in laboratory alteration and in the engine by chemometric data evaluation. Tribol Int. 2013;65:37–34. doi: 10.1016/j.triboint.2013.01.006
  • Fletcher L, Edelson E. Evaluating lubricant condition. Turbomachinery Int. 2006;47(1):40–41.
  • Stark MS, Wilkinson JJ, Lee PM. The degradation of lubricants in gasoline engines: lubricant flow and degradation in the piston assembly. In: Smith JL, Priest M, Taylor RI, et al., editors. Tribology and Interface Engineering series. Vol. 48. Elsevier; 2005. p. 779–786. doi:10.1016/S0167-8922.
  • Noronha I, Francimeire Cintra Veloso G, Eduardo Borges da Silva L. “Detecting moisture in transformer-oil using acoustic emission,” COMADEM 2013 conference paper.
  • Du L, Zhe J. On-line wear debris detection in lubricating oil for condition-based health monitoring of rotary machinery. Recent Pat Electr Electron Eng (Formerly Recent Pat Electr Eng). 2011;4(1):1–9.
  • Poley J. Oil analysis in the real world: part VII. Tribol LubrTechnol. Mar 2011;67(3):77–79.
  • Du L, Zhe J. Parallel sensing of metallic wear debris in lubricants using undersampling data processing. Tribol Int. 2012;53:28–34. doi: 10.1016/j.triboint.2012.04.005
  • Akgol O, Altintas O, Unal E, et al. Linear to left-and right-hand circular polarization conversion by using a metasurface structure. Int J Microwave Wireless Technol. 2018;10(1):133–138. doi: 10.1017/S1759078717001192
  • Bogue R. Sensing with metamaterials: a review of recent developments. Sensor Review. 2017;37(3):305–311. doi: 10.1108/SR-12-2016-0281
  • Veselago VG. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Usp. 1968;10(4):509–514. doi: 10.1070/PU1968v010n04ABEH003699
  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett.. 1996;76(25):4773. doi: 10.1103/PhysRevLett.76.4773
  • Wang B, Zhou J, Koschny T, et al. Chiral metamaterials: simulations and experiments. J Optics A: Pure Appl Optics. 2009;11(11):114003. doi: 10.1088/1464-4258/11/11/114003
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–980. doi: 10.1126/science.1133628
  • Alkurt FO, Karaaslan M. Pattern reconfigurable metasurface to improve characteristics of low-profile antenna parameters. Int J RF and Microwave Comput-Aided Eng. 2019;29(12):e21790. doi: 10.1002/mmce.21790
  • Shrekenhamer D, Chen WC, Padilla WJ. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 2013;110(17):177403. doi: 10.1103/PhysRevLett.110.177403
  • Ünal E, Bağmancı M, Karaaslan M, et al. Strong absorption of solar energy by using wide band metamaterial absorber designed with plus-shaped resonators. Int J Modern Phy B. 2018: 1850275. doi: 10.1142/S0217979218502752
  • Akgol O, Unal E, Altintas O, et al. Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal. Optik (Stuttg). 2018;161:12–19. doi: 10.1016/j.ijleo.2018.02.028
  • Keshavarz A, Vafapour Z. Water-based terahertz metamaterial for skin cancer detection application. IEEE Sens J. 2018;19(4):1519–1524. doi: 10.1109/JSEN.2018.2882363
  • Sethi KK, Palai G, Sarkar P. Realization of accurate blood glucose sensor using photonics based metamaterial. Optik (Stuttg). 2018;168:296–301. doi: 10.1016/j.ijleo.2018.04.091
  • Bakır M, Karaaslan M, Karadag F, et al. Metamaterial sensor for transformer Oil, and Microfluidics. Appl Comput Electromagn Soc J. 2019;34(5).
  • Altıntaş O, Aksoy M, Ünal E, et al. (2019, November). Metamaterial inspired sensor for detection of engine lubricant oil condition. In AIP Conference Proceedings (Vol. 2178, No. 1, p. 030010). AIP Publishing.
  • Saadeldin AS, Hameed MFO, Elkaramany EM, et al. Highly sensitive terahertz metamaterial sensor. IEEE Sens J. 2019;19(18):7993–7999.
  • Altintas O, Aksoy M, Unal E, et al. A split meander line resonator-based permittivity and thickness sensor design for dielectric materials with flat surface. J Elect Mater 2018;47(10):6185–6192. doi: 10.1007/s11664-018-6528-7
  • Dalgaç Ş, Bakır M, Karadağ F, et al. Characterization of chiral metamaterial sensor with high sensitivity. Optik (Stuttg). 2019;202:163673. doi: 10.1016/j.ijleo.2019.163673
  • Gric T, Gorodetsky A, Trofimov A, et al. Tunable plasmonic properties and absorption enhancement in terahertz photoconductive antenna based on optimized plasmonic nanostructures. J Infrared, Millimeter, Terahertz Waves. 2018;39(10):1028–1038. doi: 10.1007/s10762-018-0516-0
  • Ioannidis T, Gric T, Rafailov E. Surface plasmon polariton waves propagation at the boundary of graphene based metamaterial and corrugated metal in THz range. Optical Quantum Electron. 2020;52(1):10. doi: 10.1007/s11082-019-2128-x
  • Wu MF, Meng FY, Wu Q, et al. (2005, December). A compact equivalent circuit model for the SRR structure in metamaterials. In 2005 Asia-Pacific Microwave Conference Proceedings (Vol. 1, pp. 4-pp). IEEE.
  • Bakır M, Dalgaç Ş, Ünal E, et al. High sensitive metamaterial sensor for water treatment centres. Water, Air, & Soil Pollution. 2019;230(12):304. doi: 10.1007/s11270-019-4355-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.