128
Views
0
CrossRef citations to date
0
Altmetric
Articles

PCB prism absorber design and characterisation

ORCID Icon &
Pages 27-38 | Received 07 Jun 2020, Accepted 14 Sep 2020, Published online: 27 Sep 2020

References

  • Salisbury WW. Absorbent body for electromagnetic waves. United States Patent 2,599,944, 1952 June.
  • Knott EF , Lunden CD. The two-sheet capacitive Jaumann absorber. IEEE Trans Antennas Propagat. 1995;43(11):1339. doi: 10.1109/8.475112
  • Severin H. Nonreflecting absorbers for microwave radiation. IRE Trans Antennas Propag. 1956;4(3):385–392. doi: 10.1109/TAP.1956.1144419
  • Kazemzadeh A , Karlsson A. On the absorption mechanism of ultra thin absorbers. IEEE Trans Antennas Propagat. 2010;58(10):3310–3315. doi: 10.1109/TAP.2010.2055779
  • Padooru YR , Yakovlev AB , Kaipa CSR , et al. New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: applications to wideband absorbers. IEEE Trans Antennas Propagat. 2012;60(12):5727–5742. doi: 10.1109/TAP.2012.2209196
  • Xin W , Binzhen Z , Wanjun W , et al. Design and characterization of an ultrabroadband metamaterial microwave absorber. IEEE Photonics J. 2017;9(3):1–13. doi: 10.1109/JPHOT.2017.2700056
  • Banadaki MD , Heidari AA , Nakhkash M. A metamaterial absorber with a new compact unit cell. Antennas Wirel Propag Lett. 2018;17(2):205–208. doi: 10.1109/LAWP.2017.2780231
  • Luo H , Cheng YZ. Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure. J Electronic Mater. 2018;47(1):323–328. doi: 10.1007/s11664-017-5770-8
  • Cheng Y , Zou Y , Luo H , et al. Compact ultra-thin seven-band microwave metamaterial absorber based on a single resonator structure. J Electronic Mater. 2019;48(6):3939–3946. doi: 10.1007/s11664-019-07156-z
  • Zou H , Cheng Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt Mater. 2019;88:674–679. doi: 10.1016/j.optmat.2019.01.002
  • Li W , Cheng Y. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt Commun. 2020;462:125265. doi: 10.1016/j.optcom.2020.125265
  • Dai W , Chen F , Luo H , et al. Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance. J Alloys Compd. 2020;812:152083. doi: 10.1016/j.jallcom.2019.152083
  • Cheng Y , Luo H , Chen F. Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures. J Appl Phys. 2020;127(21):214902. doi: 10.1063/5.0002931
  • Dai W , Luo H , Chen F , et al. Synthesis of nitrogen-doped graphene wrapped SnO2 hollow spheres as high-performance microwave absorbers. RSC Adv. 2019;9(19):10745–10753. doi: 10.1039/C9RA01556F
  • Gu C , Fusco V. Study of broadband/dual-band Stack prism absorber. In: 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark: IEEE; 2020.
  • Ding F , Cui Y , Ge X , et al. Ultra-broadband microwave metamaterial absorber. Appl Phys Lett. 2012;100(10):103506. doi: 10.1063/1.3692178
  • CSΤ—Computer Simulation Technology. http://www.cst.com .
  • Navarro-Cia M , Torres Landivar V , Beruete M , et al. A slow light fishnet-like absorber in the millimeter-wave range. Prog Electromagn Res. 2011;118:287–301. doi: 10.2528/PIER11053105
  • Vt-481 datasheet [Internet]: Ventec Electronics Co. Ltd.; 2020 [cited June 4, 2020]. Available from: http://www.ventec-group.com/products/lead-free-assembly/vt-481/datasheet/ .
  • Hannan P , Balfour M. Simulation of a phased-array antenna in waveguide. IEEE Trans Antennas Propagat. 1965;13(3):342–353. doi: 10.1109/TAP.1965.1138428
  • Collin RE. Field theory of guided waves. 2nd ed New York : IEEE Press; 1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.