342
Views
2
CrossRef citations to date
0
Altmetric
Articles

Ultra-wideband metamaterial absorber doped GaAs in the infrared region

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1088-1098 | Received 18 Sep 2020, Accepted 25 Dec 2020, Published online: 06 Jan 2021

References

  • Estevez D, Qin F, Luo Y, et al. Tunable negative permittivity in Nano-Carbon Coated magnetic Microwire Polymer Metacomposites. Compos Sci Technol. 2019;171:206–217.
  • Schurig D, Mock JJ, Smith DR. Electric-Field-Coupled resonators for negative permittivity Metamaterials. Appl Phys Lett. 2006;88(4):041109.
  • Xiang-Jun G, Cai T, Zhu L. Enhancement of Gain and Directivity for Microstrip Antenna using negative permeability metamaterial. Int J Electron Commun. 2016;70(7):880–885.
  • Chiang C, Liu J, Huang Y, et al. Both Transversal negative permeability and backward-wave Propagation in X-band Waveguide with double-side SRR Metamaterials. Int J RF Microw Computer-Aided Eng. 2016;26(3):240–246.
  • Kaina N, Lemoult F, Fink M, et al. Negative refractive index and Acoustic Superlens from multiple Scattering in Single negative Metamaterials. Nature. 2015;525(7567):77–81.
  • Askari M, Zakery A, Jahromi AS. A Low loss Semi H-Shaped negative refractive index metamaterial at 4.725 THz. Photon Nanostruct. 2018;30:78–83.
  • Patel S, Raval F. Simulation study of the different Metamaterial structures. Nirma University International Conference on Engineering. 2014.Ahmedabad, India.
  • Wang BX, Zhai X, Wang GZ, et al. Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 2015;7(1):1–8.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Review Lett. 2008;100(20):207402.
  • Du QJ, Zeng ZX, Xiang D, et al. Stable high absorption metamaterial for wide-angle incidence of terahertz wave. J Mod Opt. 2014;61(7):621–625.
  • Bhattacharyya S, Ghosh S, Chaurasiya D, et al. Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Applied Physics A. 2015;118(1):207–215.
  • Peng Y, Zang XF, Zhu YM, et al. Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure. Opt Express. 2015;23(3):2032–2039.
  • Gao RM, Xu ZC, Ding CF, et al. Graphene metamaterial for multiband and broadband terahertz absorber. Opt Commun. 2015;356:400–404.
  • Feng R, Qiu J, Cao YY, et al. Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure. Appl Phys Lett. 2014;105(18):181102.
  • Jiang ZH, Yun S, Toor F, et al. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. Acs Nano. 2011;5(6):4641–4647.
  • Wang BX, et al. Broadband, polarization-insensitive and wide-angle terahertz metamaterial absorber. Physica Scripta. 2014;87(4):1–6.
  • Ling X, Xiao Z, Zheng X. An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region. Optical Quant Electron. 2017;49(7):248.
  • Iwaszczuk K, Strikwerda AC, Fan KB, et al. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express. 2012;20(1):635–643.
  • Kollatou TM, Dimitriadis AI, Kantartzis NV, et al. A class of multi-band, polarization-insensitive, microwave metamaterial absorbers in EMC analysis. 2012; Rome, Italy.
  • He Y, Wu Q, Yan S. Multi-Band Terahertz Absorber at 0.1–1 THz Frequency Based on Ultra-Thin Metamaterial Plasmonics. 2019;14(6):1303–1310.
  • Pradhan JK, Behera G, Agarwal AK, et al. Cermet based Metamaterials for Multi band absorbers over NIR to LWIR Frequencies. J Phys d-Applied Phys. 2017;50(24):245104.
  • Sijia L, Gao J, Cao X, et al. Multiband and broadband polarization -insensitive perfect absorber devices based on a Tunable and thin Double Split-ring metamaterial. Opt Express. 2015;23(3):3523–3533.
  • Thummaluru SR, Mishra N, Chaudhary RK. Design and Analysis of an Ultrathin X-band polarization-insensitive metamaterial absorber. Microw Opt Technol Lett. 2016;25(10):2481–2485.
  • Gu S, Barrett JP, Hand TH, et al. A broadband low-reflection metamaterial absorber. J Appl Phys. 2010;108(6):064913.
  • Wang BX, Wang LL, Wang GZ, et al. Theoretical Investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon Technol Lett. 2014;26(2):111–114.
  • Tang J, Xiao Z, Xu K. Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region. Opt Mater (Amst). 2016;60:142–147.
  • Zhong YK, Fu SM, Huang WM, et al. Polarization- Selective ultra-broadband Super absorber. Opt Express. 2017;25(4):A124–A133.
  • Yu P, Besteiro LV, Huang YJ, et al. Broadband metamaterial absorbers. Adv Opt Mater. 2019;7(3):1800995.
  • Ju ZD, Xu GQ, Wei ZH, et al. A Single-Patterned Five-band terahertz metamaterial absorber based on multiple resonance Mechanisms. Modern Phys Lett b. 2018;32(3):1850029.
  • Chenchong W, Huang M, Zhang Z, et al. Dual band metamaterial absorber: Combination of Plasmon and Mie Resonances. J Mater Sci Technol. 2020;53:37–40.
  • Mulla B, Sabah C. Multi-band metamaterial absorber topology for infrared frequency regime. Physica E: Low-Dimensional Syst Nanostruct. 2017;86:44–51.
  • Li H, Chowdhury DR, Ramani S, et al. Experimental Demonstration of terahertz metamaterial absorbers with a Broad and Flat high absorption band. Opt Lett. 2012;37(2):154–156.
  • Yongzhi C, Nie Y, Gong R. A polarization-insensitive and Omnidirectional broadband terahertz metamaterial absorber based on Coplanar Multi-Squares Films. Opt Laser Technol. 2013;48:415–421.
  • Wang G D, Liu MH, Hu XW, et al. Broadband and ultra-thin terahertz metamaterial absorber based on Multi-Circular Patches. Euro Phys J B. 2013;86(7):1–9.
  • Xiao Z, Tang J. Broadband, ultrathin and polarization-insensitive metamaterial absorber based on a new mixing material in infrared and visible regions. Mater Lett. 2017;192:21–24.
  • Ben-Xin W, Wang L-L, Wang G-Z, et al. Theoretical Investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon Technol Lett. 2014;26(2):111–114.
  • Liu S, Chen HB, Cui TJ. A broadband terahertz absorber using Multi-layer Stacked Bars. Appl Phys Lett. 2015;106(15):151601.
  • Xun-jun H, Yan S-t, Ma Q-x, et al. Broadband and polarization-insensitive terahertz absorber based on Multilayer Metamaterials. Opt Commun. 2015;340:44–49.
  • Ding F, Cui YX, Ge XC, et al. Ultra-broadband microwave metamaterial absorber. Appl Phys Lett. 2012;100(10):103506.
  • Liu X, Alu A. Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach. Physical Review b. 2013;87(23):235136.
  • Torrent D, Sánchez-Dehesa J. Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New J Phys. 2011;13(9):093018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.