92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Compact and very sharp roll-off low-pass filter using folded flag resonator

&
Pages 1161-1175 | Received 29 Jun 2020, Accepted 02 Jan 2021, Published online: 11 Jan 2021

References

  • Hong J-SG, Lancaster MJ. Microstrip filters for RF/microwave applications. Vol. 167. Hoboken (NJ): John Wiley & Sons; 2004.
  • Pozar DM. Microwave engineering. New York (NY): Wiley; 1998.
  • Naghar A. Synthesis design of bandpass filter for UWB applications with improved selectivity. Appl Comput Electromagn Soc J. 2016;31:1.
  • Wang J, Xu L-J, Zhao S, et al. Compact quasi-elliptic microstrip lowpass filter with wide stopband. Electron Lett. 2010;46(20):1384–1385.
  • Hayati M, Yousefzadeh Y. Compact lowpass filter with wide stopband using windmill-shaped resonator. Arab J Sci Eng. 2014;39(4):3033–3038.
  • Jiang S, Xu J. Sharp roll-off planar lowpass filter with ultra-wide stopband up to 40 GHz. Electron Lett. 2017;53(11):734–735.
  • Majidifar S. High performance microstrip LPFs using dual taper loaded resonator. Optik Int J Light Electr Optics. 2016;127(6):3484–3488.
  • Shaman H, Almorqi S, AlAmoudi A. Composite microstrip lowpass filter with ultrawide stopband and low insertion loss. Microw Opt Technol Lett. 2015;57(4):871–874.
  • Li Q, Zhang Y, Fan Y. Compact ultra-wide stopband low pass filter using multimode resonators. Electron Lett. 2015;51(14):1084–1085.
  • Vaezi A, Gharakhili FG. Design and fabrication of microstrip lowpass filter using asymmetric hairpin resonator. Int J RF Microw Comp Aided Eng. 2019;29(7):e21733.
  • Jiang S, Xu J. Compact microstrip lowpass filter with ultra-wide stopband based on dual-plane structure. Electron Lett. 2017;53(9):607–609.
  • Lotfi S, Hayati M. Compact low-pass filter with ultra-wide stopband using analysed triangular-shaped resonator. Electron Lett. 2017;53(15):1050–1052.
  • Yang Y, Zhu X, Karmakar NC. A novel microstrip lowpass filter using compact microstrip resonant cells and uniquely shaped defected ground structures. Microw Opt Technol Lett. 2012;54(11):2462–2464.
  • Zhang B, Li S, Huang J. Compact lowpass filter with wide stopband using coupled rhombic stubs. Electron Lett. 2015;51(3):264–266.
  • Xiao M, Sun G, Li X. A lowpass filter with compact size and sharp roll-off. IEEE Microw Wireless Comp Lett. 2015;25(12):790–792.
  • Karthikeyan SS, Kshetrimayum RS. Compact and wide stopband lowpass filter using open complementary split ring resonator and defected ground structure. Radioengineering. 2015;24(3):708–711.
  • Liu S, Xu J, Xu Z. Compact lowpass filter with wide stopband using stepped impedance hairpin units. Electron Lett. 2014;51(1):67–69.
  • Raphika PM, Abdulla P, Jasmine PM. Planar elliptic function lowpass filter with sharp roll-off and wide stopband. Microw Opt Technol Lett. 2016;58(1):133–136.
  • Zhang T, Cai Z, Yang Y, et al. Compact tunable lowpass filter with sharp roll-off and low insertion loss. Microw Opt Technol Lett. 2017;59(10):2619–2623.
  • Rahmatinezhad SM. High performance LPF with negligible group delay using circular resonator and transfer function analysis. Microw Opt Technol Lett. 2019;61(6):1540–1544.
  • Kazemi SH, Hayati M. A compact microstrip lowpass filter with wide stopband using rectangular resonator and high impedance elements. Int J Microw Wireless Technol. 2019;11(9):885–893.
  • Cao HL, Ying WB, Li H, et al. Compact lowpass filter with ultra-wide stopband rejection using meandered-slot dumbbell resonator. J Electromag Waves Appl. 2012;26(17–18):2203–2210.
  • Cao H, Ying W, Li H, et al. Compact lowpass filter with wide stopband using novel windmill resonator. J Electromag Waves Appl. 2012;26(17–18):2234–2241.
  • Moloudian G, Dousti M, Ebrahimi A. Design and fabrication of a compact microstrip low-pass filter with ultra-wide stopband and sharp roll-off-rate. J Electromag Waves Appl. 2018;32(6):713–725.
  • Bedair SS. Characteristics of some asymmetrical coupled transmission lines (short paper). IEEE Trans Microw Theory Tech. 1984;32(1):108–110.
  • Hilberg W. From approximations to exact relations for characteristic impedances. IEEE Trans Microw Theory Tech. 1969;17(5):259–265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.