90
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation of equilateral triangular patch antenna covered with several dielectric layers: theoretical and experimental study

ORCID Icon & ORCID Icon
Pages 1770-1801 | Received 29 Jul 2020, Accepted 10 Apr 2021, Published online: 20 Apr 2021

References

  • Ramalingam VS, Kanagasabai M, Sundarsingh EF. Detection of voids in fiber reinforced plastics using magnetoinductive coupled microstrip sensor. IEEE Sens J. May 2015;15:4182–4183.
  • Abbas Z, Yeow YK, Shaari AH, et al. Complex permittivity and moisture measurements of oil palm fruits using an open-ended coaxial sensor. IEEE Sens J. Nov 2005;5:1281–1287.
  • Ghasr MT, Simms D, Zoughi R. Multimodal solution for a waveguide radiating into multilayered structures—dielectric property and thickness evaluation. IEEE Trans Instrum Meas. Jan 2009;58:1505–1513.
  • Park J, Nguyen C. An ultrawide-band microwave radar sensor for nondestructive evaluation of pavement subsurface. IEEE Sens J. Sep 2005;5:942–949.
  • Park J, Nguyen C. Development of a new millimeter-wave integrated-circuit sensor for surface and subsurface sensing. IEEE Sens J. Jun 2006;6:650–655.
  • Han J, Nguyen C. Development of a tunable multiband UWB radar sensor and its applications to subsurface sensing. IEEE Sens J. Dec 2006;7:51–58.
  • Elfaramawy T, Fall CL, Arab S, et al. A wireless respiratory monitoring system using a wearable patch sensor network. IEEE Sens J. Oct 2018;19:650–657.
  • Mehta P, Chand K, Narayanswamy D, et al. Microwave reflectometry as a novel diagnostic tool for detection of skin cancers. IEEE Trans Instrum Meas. Jul 2006;55:1309–1316.
  • Fear EC, Hagness SC, Meaney PM, et al. Enhancing breast tumor detection with near-field imaging. IEEE Microw Mag. Aug 2002;3:48–56.
  • Hagness SC, Taflove A, Bridges JE. Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element. IEEE Trans Antennas Propagat. May 1999;47:783–791.
  • Fear EC, Li X, Hagness SC, et al. Confocal microwave imaging for breast cancer detection. localization of tumors in three dimensions. IEEE Trans Biomed Eng. Aug 2002;49(8):812–822.
  • Bogosanovich M. Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials. IEEE Trans Instrum Meas. Oct 2000;49(5):1144–1148.
  • Li Y, Bowler N. Resonant frequency of a rectangular patch sensor covered with multilayered dielectric structures. IEEE Trans Antennas Propagat. Mar 2010;58(6):1883–1889.
  • Biswas M, Mandal A. Design and development of an equilateral patch sensor for determination of permittivity of homogeneous dielectric medium. Microw Opt Tech Lett. May 2014;56(5):1097–1104.
  • Huang H, Farahanipad F, Singh AK. A stacked dual-frequency microstrip patch antenna for simultaneous shear and pressure displacement sensing. IEEE Sens J. Oct 2017;17(24):8314–8323.
  • Verma AK, Omar AS. Microstrip resonator sensors for determination of complex permittivity of materials in sheet, liquid and paste forms. IEE Proc Microw Antennas Propagat. Feb 2005;152(1):47–54.
  • Wichaidit C, Peck JR, Lin Z, et al. Resonant slot antennas as transducers of DNA hybridization: a computational feasibility study. IEEE MTT-S Int Microw Symp Dig. 2001;1:163–166.
  • Zucchelli A, Chimenti M, Bozzi E, et al. Application of a coaxial-fed patch to microwave non-destructive porosity measurements in low-loss dielectrics. Progr Electromagn Res. 2008;5:1–4.
  • Cataldo A, Monti G, De Benedetto E, et al. A noninvasive resonance-based method for moisture content evaluation through microstrip antennas. IEEE Trans Instrum Meas. Feb 2009;58(5):1420–1426.
  • Ghretli MM, Khalid K, Grozescu IV, et al. Dual-frequency microwave moisture sensor based on circular microstrip antenna. IEEE Sens J. Nov 2007;7(12):1749–1756.
  • Jain S, Mishra PK, Thakare VV, et al. Microstrip moisture sensor based on microstrip patch antenna. Progr Electromagn Res. 2018;76:177–185.
  • Nilsson E, Baath L. Radar interferometric measurements with a planar patch antenna array. IEEE Sens J. May 2007;7(7):1025–1031.
  • Stephan KD, Mead JB, Pozar DM, et al. A near field focused microstrip array for a radiometric temperature sensor. IEEE Trans Antennas Propagat. Apr 2007;55(4):1199–1203.
  • Farinholt KM, Park G, Farrar CR. RF energy transmission for a low-power wireless impedance sensor node. IEEE Sens J. May 2009;9(7):793–800.
  • Shams KM, Ali M. Wireless power transmission to a buried sensor in concrete. IEEE Sens J. Oct 2007;7(12):1573–1577.
  • Garcia-Banos B, Cuesta-Soto F, Griol A, et al. Enhancement of sensitivity of microwave planar sensors with EBG structures. IEEE Sens J. Nov 2006;6(6):1518–1522.
  • Hassan A, Lee K, Bae J, et al. An inkjet-printed microstrip patch sensor for liquid identification. Sens Actuat A: Phys. Dec 2017;268:141–147.
  • Li Y, Bowler N. Design of patch sensors for microwave nondestructive evaluation of aircraft radomes. Electromag Nondest Evaluat. (XIII). May 2010;13:45.
  • Barot SF, Bernhard JT. Permittivity measurement of layered media using a microstrip test bed. IEEE Int. Symp. Antennas Propagat. Jul 2008;1:1–4.
  • Alexopoulos NG, Jackson DR. Fundamental superstrate (cover) effects on printed circuit antennas. IEEE Trans Antennas Propagat. Aug.1984;32:807–816.
  • Hong CS. Gain-enhanced broadband microstrip antenna. Proc Natl Sci Counc Rep China A. 1999;23:609–611.
  • Karaboga D, Guney K, Karaboga N, et al. Simple and accurate effective side length expression obtained by using a modified genetic algorithm for the resonant frequency of an equilateral triangular microstrip antenna. Int J Electron. Jul 1997;83(1):99–108.
  • Biswas M, Mandal A. CAD model to compute the input impedance of an equilateral triangular microstrip patch antenna with radome. Progr Electromagn Res. 2010;12:247–257.
  • Luo Q, Gao S, Sobhy M, et al. Dual circularly polarized equilateral triangular patch array. IEEE Trans Antennas Propagat. Apr 2016;64(6):2255–2262.
  • Sumantyo JS, Ito K, Takahashi M. Dual-band circularly polarized equilateral triangular-patch array antenna for mobile satellite communications. IEEE Trans Antennas Propagat. Nov 2005;53(11):3477–3485.
  • Hong JS, Li S. Theory and experiment of dual-mode microstrip triangular patch resonators and filters. IEEE Trans Microw Theory Tech. 2004;52(4):1237–1243.
  • Helszajn J, James DS. Planar triangular resonators with magnetic walls. IEEE Trans Microw Theory Tech. Feb 1978;26(2):95–100.
  • Sharma AK, Bhat BH. Analysis of triangular microstrip resonators. IEEE Trans Microw Theory Tech. Nov 1982;30(11):2029–2031.
  • Kuester E, Chang D. A geometrical theory for the resonant frequencies and Q-factors of some triangular microstrip patch antennas. IEEE Trans Antennas Propagat. Jan 1983;31(1):27–34.
  • Dahele J, Lee K. On the resonant frequencies of the triangular patch antenna. IEEE Trans Antennas Propagat. Jan 1987;35(1):100–101.
  • Lee KF, Luk KM, Dahele JS. Characteristics of the equilateral triangular patch antenna. IEEE Trans Antennas Propagat. Nov 1988;36(11):1510–1518.
  • Chen W, Lee KF, Dahele JS. Theoretical and experimental studies of the resonant frequencies of the equilateral triangular microstrip antenna. IEEE Trans Antennas Propagat. Oct 1992;40(10):1253–1256.
  • Olaimat MM, Dib NI. Improved formulae for the resonant frequencies of triangular microstrip patch antennas. Int J Electron. Mar 2011;98(3):407–424.
  • Olaimat MM, Dib NI. A study of 15°-75°-90° angles triangular patch antenna. Progr Electromagn Res. 2011;21:1–9.
  • Guney K, Kurt E. Effective side length formula for resonant frequency of equilateral triangular microstrip antenna. Int J Electron. 2016;103(2):261–268.
  • Guha D, Siddiqui JY. Resonant frequency of equilateral triangular microstrip antenna with and without air gap. IEEE Trans Antennas Propagat. Aug 2004;52(8):2174–2178.
  • Esselle K, Verma AK. Resonance frequency of an equilateral triangular microstrip antenna. Microw Opt Tech Lett. Dec 2005;47(5):485–489.
  • Gurel CS, Yazgan E. New computation of the resonant frequency of a tunable equilateral triangular microstrip patch. IEEE Trans Microw Theory Tech. 2000;48(3):334–338.
  • Biswas M, Dam M. Fast and accurate model of equilateral triangular patch antennas with and without suspended substrates. Microw Opt Tech Lett. Nov 2012;54(11):2663–2668.
  • Biswas M, Dam M. Characteristics of equilateral triangular patch antenna on suspended and composite substrates. Electromagn. Feb 2013;33(2):99–115.
  • Biswas M, Dam M. Theoretical and experimental studies on characteristics of an equilateral triangular patch antenna with and without variable air gaps. Microw Opt Tech Lett. Oct 2013;55(10):2271–2277.
  • Biswas M, Dam M. CAD oriented improved cavity model to investigate a 300-600-900 right angled triangular patch antenna on single, composite and suspended substrate for the application in portable wireless equipments. IET Microw Antennas Propagat. Nov 2017;12(3):425–434.
  • Biswas M, Dam M. Closed-form model to determine the co-axial probe reactance of an equilateral triangular patch antenna. Int J Microw Wirel Tech. Sep 2018;10(7):801–813.
  • Hassani HR, Mirshekar-Syahkal D. Analysis of triangular patch antennas including radome effects. IEE Proc H. 1992;139(3):251–256.
  • Biswas M, Guha D. Input impedance and resonance characteristics of superstrate-loaded triangular microstrip patch. IET Microw Antennas Propagat. Jan 2009;3(1):92–98.
  • High Frequency Structure Simulator: Ansoft Corp. 2012.
  • CST Microwave Studio, 2014.
  • Svacina J. A simple quasi-static determination of basic parameters of multilayer microstrip and coplanar waveguide. IEEE Microw Guided Wave Lett. Oct. 1992;2(10):385–387.
  • Bernhard JT, Tousignant CJ. Resonant frequencies of rectangular microstrip antennas with flush and spaced dielectric superstrates. IEEE Trans Antennas Propagat. Feb 1999;47(2):302–308.
  • Guha D, Siddiqui JY. Resonant frequency of circular microstrip antenna covered with dielectric superstrate. IEEE Trans. Antennas Propagat. Jul. 2003;51:1649–1652.
  • Wolff I, Knoppik N. Rectangular and circular microstrip disk capacitors and resonators. IEEE Trans Microw Theory Tech. Oct 1974;22(10):857–864.
  • Mesa F, Jackson DR, Freire MJ. Evolution of leaky modes on printed-circuit lines. IEEE Trans Microw Theory Tech. Aug 2002;50(1):94–104.
  • Nghiem D, Williams JT, Jackson DR, et al. Existence of a leaky dominant mode on microstrip line with an isotropic substrate: Theory and measurements. IEEE Trans Microw Theory Tech. Oct 1996;44(10):1710–1715.
  • Jackson DR, Oliner AA. A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans Antennas Propagat. Jul 1988;36(7):905–910.
  • Peixeiro C, Barbosa AM. Leaky and surface waves in anisotropic printed antenna structures. IEEE Trans Antennas Propagat. 1992;40(5):566–569.
  • Garg R. Microstrip Antenna Design Handbook: Artech House; 2001.
  • Biswas M, Mandal A. Experimental and theoretical investigation to predict the effect of superstrate on the impedance, bandwidth, and gain characteristics for a rectangular patch antenna. J Electromagn Waves Applicat. Nov 2015;29(16):2093–2109.
  • Pozar DM. Microwave engineering: John wiley & sons; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.