359
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Near-zero-refractive-index metasurface antenna with bandwidth, directivity and front-to-back radiation ratio enhancement

& ORCID Icon
Pages 1863-1881 | Received 25 Nov 2020, Accepted 25 Apr 2021, Published online: 03 May 2021

References

  • Akalin T, Danglot J, Vanbésien O, et al. A highly directive dipole antenna embedded in a Fabry–Pérot type cavity. IEEE Microwave Wirel Compon Lett. 2002; 12(2):48–50.
  • Foroozesh A, Shafai L. Effects of artificial magnetic conductors in the design of low-profile high-gain planar antennas with high-permittivity dielectric superstrate. IEEE Antenna Wirel Propag Lett. 2009;8:10–13.
  • Vettikalladi H, Lafond O, Himdi M. High-efficient and high-gain superstrate antenna for 60-GHz indoor communication. IEEE Antenna Wirel Propag Lett. 2009;8:1422–1425.
  • Kelly JR, Feresidis AP. Array antenna with increased element separation based on a Fabry-Perot resonant cavity with AMC walls. IEEE Antennas Propag. Mag. 2009;57(3):682–687.
  • Debogovic T, Perruisseau-Carrier J. Array-fed partially reflecting surface antenna with independent scanning and beamwidth dynamic control. IEEE Trans Antennas Propag. 2014;62(1):446–449.
  • Pirhadi A, Bahrami H, Nasri J. Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Trans Antennas Propag. 2012;60(4):2101–2106.
  • Di Massa G, Costanzo S, Moreno HO. Planar Fabry–Perot directive antenna: a simplified analysis by equivalent circuit approach. J Electromagn Waves Appl. 2015;29(2):261–274.
  • Pan W, Huang C, Chen P, et al. A low-RCS and high-gain partially reflecting surface antenna. IEEE Trans Antennas Propag. 2014;62(2):945–949.
  • Jagtap Shishir D, Gupta Rajiv K, Nayana C, et al. Gain and bandwidth enhancement of circularly polarized MSA using PRS and AMC layers. Prog Electromagn Res C. 2018;87:107–118.
  • Vaidya AR, Gupta RK, Mishra SK, et al. Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces. IEEE Antennas Wirel Propag Lett. 2014;13:431–434.
  • Singh AK, Abegaonkar MP, Koul SK. High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate. IEEE Antennas Wirel Propag Lett. 2017;16:2388–2391.
  • Wang N, Li J, Wei G, et al. Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates. IEEE Antennas Wirel Propag Lett. 2015;14:229–232.
  • Kabiri S, Kornaros E, De Flaviis F. Wideband circular polarized Fabry-Perot cavity antennas for V-band indoor point-to-point communications. Electromagnetics. 2019;39(3):198–216.
  • Wang N, Liu Q, Wu C, et al. Wideband Fabry-Perot resonator antenna with two complementary FSS layers. IEEE Trans Antennas Propag. 2014;62(5):2463–2471.
  • Chacko BP, Augustin G, Denidni TA, et al. C-band, point to point communication. IEEE Antennas Propag Mag. 2014;62(1):19–26.
  • Ji L-Y, Qin P-Y, Guo YJ. Wideband Fabry-Perot cavity antenna with a shaped ground plane. IEEE Access. 2018;6:2291–2297.
  • Wu Z-H, Zhang W-X. Broadband printed compound air-fed array antennas. IEEE Antennas Wirel Propag Lett. 2010;9:187–190.
  • Vaid S, Mittal A. Wideband orthogonally polarized resonant cavity antenna with dual layer Jerusalem cross partially reactive surface. Prog Electromagn Res C. 2017;72:105–113.
  • Konstantinidis K, Feresidis AP, Hall PS. Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas. IEEE Trans Antennas Propag. 2014;62(7):3474–3481.
  • Abdalla M, Hu Z, Muvianto C. Analysis and design of a triple band metamaterial simplified CRLH cells loaded monopole antenna. Int J Microwave Wirel Technol. 2017;9(4):903–913.
  • Abdalla M, Hu Z. Design and analysis of compact quad band loaded monopole antenna with independent resonators. Int J Microw Wirel Technol. 2018;10(4):479–486.
  • Sharma S, Abdalla M, Hu Z. Miniaturization of an electrically small metamaterial inspired antenna using additional conducting layer. IET Microw Antennas Propag. 2018;12(8):1444–1449.
  • Holloway CL, Edward F, Kuester Joshua A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag. 2012;54(2):10–35.
  • Li ZS, Qing X, Li EP, et al. A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans Antennas Propag. 2016;60:6018–6023.
  • Han Y, Zhang J, Li Y, et al. Miniaturized-element offset-feed planar reflector antennas based on metasurfaces. IEEE Antenna Wirel Propag Lett. 2017;16:282–285.
  • Abbak M, Çayören M, Akduman I. Microwave breast phantom measurements with a cavity-backed Vivaldi antenna. IET Microw Antennas Propag. 2014;8:1127–1133.
  • Jafari H, Deen J, Hranilovic S, et al. Co-polarised and cross-polarised antenna arrays for breast, cancer detection. IET Microw Antennas Propag. 2007;1:1055–1058.
  • Jia Y, Liu Y, Zhang W, et al. High-gain FabryPérot antennas with wideband low monostatic RCS using phase gradient metasurface. IEEE Access. 2019;7:4816–4824.
  • Li SJ, Li YB, Li H, et al. A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously. Physik. 2020;532(5):2000020.
  • Li SJ, Li YB, Zhang L, et al. Programmable controls to scattering properties of a radiation array. Laser Photonics Rev. 2021;15(2):2000449.
  • Xu H-X, Wang GM, Tao Z, et al. An octave-bandwidth Maxwell fish-eye lens antenna using three-dimensional gradient-index fractal metamaterials. IEEE Trans Antennas Propag. 2014;62(9):4823–4828.
  • Liu J, Cheng Y, Nie Y, et al. Metamaterial extends microstrip antenna. Microw RF. 2013;52:69.
  • Oliner AA. A periodic-structure negative-refractive-index medium without resonant elements. IEEE-APSURSI International Symposium Digest, San Antonio, TX, USA, Vol. 41. 2002.
  • Monsoriu JA, Depine RA, Silvestre E. Non-Bragg band gaps in 1D metamaterial aperiodic multilayers. J Eur Opt Soc Rapid Publ. 2007;2:1–5.
  • Denidni TA, Coulibaly Y, Boutayeb H. Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement. IEEE Trans Antennas Propag. 2009;57(4):1043–1049.
  • Feresidis AP, Vardaxoglou JC. High gain planar antenna using optimized partially reflective surfaces. IEEE Proc Microw Antennas Propag. 2001;148(6):345–350.
  • Razi ZM, Bahadori N, Rezaei P. A comparative study on the directivity enhancement of the patch, SRR and Omega unit cells as Fabry-Perot superstrate. 2nd Asian Symposium on Electromagnetics and Photonics Engineering, Tabriz, Iran; 2013. p. 147–148.
  • Razi ZM, Rezaei P, Bahadori N. Directivity improvement of microstrip antenna with S metamaterial unit cell as Fabry-Perot cavity superstrate. 2nd Asian Symposium on Electromagnetics and Photonics Engineering, Tabriz, Iran; 2013. p. 127–128.
  • Razi ZM, Rezaei P. Design and simulation of directivity microstrip patch antenna by Fabry-Perot omega unit cells. IEEE APS International Symposium on Antennas and Propagation, Orlando, FL, USA; 2013.
  • Thevenot M, Cheype C, Reineix A, et al. Directive photonic bandgap antennas. IEEE Trans Microwave Theory Tech. 1999;47:2115–2122.
  • Feresidis AP, Goussetis G, Wang S, et al. Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans Antennas Propagat. 2005;53(1):209–215.
  • Von TG. Partially reflecting sheet arrays. IRE Trans Antennas Propag. 1956;4(4):666–671.
  • Xie P, Wang G, Li H, et al. A novel methodology for gain enhancement of the Fabry-Pérot antenna. IEEE Access. 2019;7:176170–176176.
  • Yu N. Light propagation with phase discontinuities. Generalized laws of reflection and refraction. Science. 2011;334(6054):333–337.
  • Liu A, Lei S, Shi X, et al. Study of antenna superstrates using metamaterials for directivity enhancement based on Fabry-Perot resonant cavity. Int J Antennas Propag. 2013;2013:1–10.
  • Nicolson AM, Ross GF. Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans Instrum Meas. 1970;19:377–382.
  • Weir WB. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE. 1974;62:33–36.
  • Uddin MJ, Ullah MH, Latef TA, et al. Making meta better. The synthesis of new-shaped periodic artificial structures suitable for metamaterial behavior characterization. IEEE Microw Mag. 2016;17(17):52–58.
  • Ziolkowski RW. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys Rev E. 2004;70:046608.
  • Zhou H, Zhibin P, Qu S, et al. A novel high-directivity microstrip patch antenna based on zero index metamaterial. IEEE Antennas Propag Lett. 2009;8:538–541.
  • Wang B, Huang K-M. Shaping the radiation pattern with mu and epsilon-near-zero a metamaterials. Prog Electromagn Res. 2010;106:107–119.
  • Kalraiya S, Chaudhary RK, Abdalla MA, et al. Polarization and incident angle independent metasurface absorber for X-band application. Mater Res Exp. 2019;6:045802.
  • Rydström S, Lindhe O. Efficient calculations of antenna radiation patterns using the fast Fourier transform. AIP Conf Proc. 2006;834(1):87–91.
  • Microwave Journal e-Book. Selection of PCB materials for 5G. Rogers Corporation; 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.