214
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ku-band 8-way Wilkinson power divider based on ridge gap waveguide technology

& ORCID Icon
Pages 2283-2303 | Received 04 Nov 2020, Accepted 08 Jun 2021, Published online: 21 Jun 2021

References

  • Olokede SS, Ain MF. A linear array quasi-lumped element resonator antenna with a corporate-feed network. J Electromagn Waves Appl. 2014;28(1):1–12.
  • Staszek K, Gruszczynski S, Wincza K. Broadband feeding networks based on directional filters for two-beam antenna arrays. J Electromagn Waves Appl. 2020;34(no. 9):1300–1307.
  • Colantonio P, Giannini F, Limiti E. ‘Power combining’, in ‘high efficiency RF and microwave solid state power amplifiers’. Wiley Online Library. 2019: 369–434.
  • Goryashko VA, Dancila D, Rydberg A, et al. A megawatt class compact power combiner for solid-state amplifiers. J Electromagn Waves Appl. 2014;28(no. 18):2243–2255.
  • El-Asmar M, Birafane A, El-Rafhi A. Analytical and experimental study of LINC amplifier using unmatched Wilkinson combiners. AEU Int J Electron Commun. 2018;97:1–5.
  • Das BN, Somasekhar Rao PVD. Scattering characteristics of a slot-coupled T-junction between rectangular and circular waveguides. J Electromagn Waves Appl. 1991;5(6):563–576.
  • Grda ŁA, Pregla R. Analysis of coplanar T-junctions by the method of lines. AEU Int J Electron Commun. 2001;55(5):313–318.
  • Wilkinson EJ. An N-Way hybrid power divider. IRE Trans Microw Theory Tech. 1960;8(1):116–118.
  • Kumar M, Islam SN, Sen G, et al. Design of compact Wilkinson power divider and branch line coupler using hairpin based line. AEU Int J Electron Commun. 2019;110: 152825.
  • Bemani M, Nikmehr S, Hosseinzadeh S. Arbitrary dual-band unequal Wilkinson power divider based on negative refractive index transmission lines. AEU Int J Electron Commun. 2013;67(5):382–386.
  • Wu Y, Liu Y. A novel wideband coupled-line Gysel power divider with function of impedance matching. J Electromagn Waves Appl. 2012;26(no. 14–15):2012–2021.
  • Moradi E, Moznebi A-R, Afrooz K, et al. Gysel power divider with efficient second and third harmonic suppression using one resistor. AEU Int J Electron Commun. May 2018;89:116–122.
  • Veysifard S, Shama F. Miniaturized Gysel power divider with nth harmonics suppression. AEU Int J Electron Commun. 2018;95:279–286.
  • Xia B, Wu L-S, Mao J, et al. A new quad-band Wilkinson power divider. J Electromagn Waves Appl. 2014;28(no. 13):1622–1634.
  • Song K, Zhang F, Chen F, et al. Wideband millimetre-wave four-way spatial power combiner based on multilayer SIW. J Electromagn Waves Appl. 2013;27(no. 13):1715–1719.
  • Lin Z, Chu Q-X. A novel compact UWB power divider for spatial power combining. J Electromagn Waves Appl. 2009;23(no. 13):1803–1812.
  • Sedighy SH, Khalaj-Amirhosseini M. Compact Wilkinson power divider using stepped impedance transmission lines. J Electromagn Waves Appl. 2011;25(no. 13):1773–1782.
  • Khajeh-Khalili F, Honarvar MA, Dadgarpour A, et al. Compact tri-band Wilkinson power divider based on metamaterial structure for bluetooth, WiMAX, and WLAN applications. J Electromagn Waves Appl. 2019;33(6):707–721.
  • Dai GL, Xia MY. A dual-band unequal Wilkinson power divider using asymmetric coupled-line. J Electromagn Waves Appl. 2011;vol. 25(no. 11–12):1587–1595.
  • Xi L, Lin Y. A novel design of dual-band Wilkinson power divider with simple structure and wide band-ratios characteristics. J Electromagn Waves Appl. 2014;28(no. 13):1635–1641.
  • Naghavi AH, Tondro-Aghmiyouni M, Jahanbakht M, et al. Hybrid wideband microstrip Wilkinson power divider based on lowpass filter optimized using particle swarm method. J Electromagn Waves Appl. 2010;24(no. 14–15):1877–1886.
  • Alfonso E, Valero A, Herranz JI, et al. New waveguide technology for antennas and circuits. Waves Year. 2011;3:65–75.
  • Tang X, Mouthaan K. Analysis and design of compact two-way Wilkinson power dividers using coupled lines. 2009 Asia Pacific Microwave Conference. 2009: 1319–1322.
  • Zhang Z-Y, Wu K. Broadband half-mode substrate integrated waveguide (HMSIW) Wilkinson power divider. 2008 IEEE MTT-S International Microwave Symposium Digest. June 2008: 879–882.
  • Smith NA, Abhari R. Compact substrate integrated waveguide Wilkinson power dividers. 2009 IEEE Antennas and Propagation Society International Symposium. June 2009: 1–4.
  • Ahmadi B, Banai A. A power divider/combiner realized by ridge gap waveguide technology for millimeter wave applications. 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT). December 2016: 5–8.
  • Kildal P-S, Alfonso E, Valero-Nogueira A, et al. Local metamaterial-based waveguides in gaps between parallel metal plates. IEEE Antennas Wirel Propag Lett. 2008;2008(8):84–87.
  • Kildal P-S, Vosoogh A, Hadavy F, et al. Waveguides and transmission lines in gaps between parallel conducting surfaces. Google Patents. 2019;10(263):310.
  • Kildal P-S. Erratum: definition of artificially soft and hard surfaces for electromagnetic waves. Electron Lett. 1988;24(6):366.
  • Pucci E, Zaman AU, Rajo-Iglesias E, et al. ‘Losses in ridge gap waveguide compared with rectangular waveguides and microstrip transmission lines’. Proceedings of the Fourth European Conference on Antennas and Propagation. April 2010: 1–4.
  • Zaman AU, Kildal PS. Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology. IEEE Trans Antennas Propag. 2014;62(6):2992–3001.
  • Dadgarpour A, Sorkherizi MS, Kishk AA. Wideband low-loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding. IEEE Trans Antennas Propag. 2016;64(12):5094–5101.
  • Maaskant R, Shah WA, Uz Zaman A, et al. ‘Spatial power combining and splitting in gap waveguide technology’. IEEE Microw. Wirel. Components Lett. 2016;26(7):472–474.
  • Shams SI, Kishk AA. Wide band power divider based on ridge gap waveguide. 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). July 2016: 1–2.
  • Birgermajer S, Janković N, Radonić V, et al. ‘Microstrip-ridge gap waveguide filter based on cavity resonators with mushroom inclusions’. IEEE Trans. Microw. Theory Tech. 2017;66(1):136–146.
  • Mazinani M, Arezoomand M, Pirhadi A. Ku-band gap waveguide filter design with improved out of band response. Microw Opt Technol Lett. 2018;60(9):2154–2161.
  • Zaman AU, Alexanderson M, Vukusic T, et al. ‘Gap waveguide PMC packaging for improved isolation of circuit components in high-frequency microwave modules’, IEEE Trans. components Packag. Manuf. Technol. 2013;4(1):16–25.
  • Ahmadi B, Banai A. ‘Substrateless amplifier module realized by ridge gap waveguide technology for millimeter-wave applications’. IEEE Trans. Microw. Theory Tech. 2016;64(11):3623–3630.
  • Ahmadi B, Banai A. Substrate-less oscillator module realized by gap waveguide technology for millimeter wave applications. 2017 47th European Microwave Conference (EuMC). October 2017: 1116–1119.
  • Alfonso Alós E. New quasi-TEM waveguides using artificial surfaces and their application to antennas and circuits. Univ Polit Valen. 2011.
  • Sievenpiper DF. ‘Artificial impedance surfaces for antennas’. Wiley Online Library. 2008: 737–777.
  • Sievenpiper D. High-Impedance Electromagnetic Surfaces, Ph.D. dissertation, Department of Electrical Engineering, UCLA, 1999.
  • Mosallaei H, Rahmat-Samii Y. ‘Periodic bandgap and effective dielectric materials in electromagnetics: characterization and applications in nanocavities and waveguides’. IEEE Trans Antennas Propag. 2003;51(3):549–563.
  • Kildal P-S. ‘Artificially soft and hard surfaces in electromagnetics’. IEEE Trans Antennas Propag. 1990;38(10):1537–1544.
  • Kildal P-S, Kishk AA, Maci S. ‘Special issue on artificial magnetic conductors, soft/hard surfaces, and other complex surfaces’. IEEE Trans Antennas Propag. 2005;53(1):2–7.
  • Monorchio A, Manara G, Lanuzza L. ‘Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces’. IEEE Antennas Wirel Propag Lett. 2002;1:196–199.
  • Kern DJ, Werner DH, Monorchio A, et al. ‘The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces’. IEEE Trans Antennas Propag. 2005;53(1):8–17.
  • Polemi A, Maci S, Kildal P-S. ‘Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails’. IEEE Trans Antennas Propag. 2010;59(3):904–913.
  • Zaman AU, Rajo-Iglesias E, Alfonso E, et al. Design of transition from coaxial line to ridge gap waveguide. 2009 IEEE Antennas and Propagation Society International Symposium. 2009: 1–4.
  • Brazález AA, Zaman AU, Kildal P-S. Design of a coplanar waveguide-to-ridge gap waveguide transition via capacitive coupling. 2012 6th European Conference on Antennas and Propagation (EUCAP). March 2012: 3524–3528.
  • Brazález AA, Zaman AU, Kildal P-S. ‘Investigation of a microstrip-to-ridge gap waveguide transition by electromagnetic coupling’. Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. July 2012: 1–2.
  • Zaman AU, Vukusic T, Alexanderson M, et al. Design of a simple transition from microstrip to ridge gap waveguide suited for MMIC and antenna integration. IEEE Antennas Wirel. Propag. Lett. 2013;12:1558–1561.
  • Arias CG, Member S, Escudero MB, et al. ‘Test-fixture for suspended-strip gap-waveguide technology on Ka-band’. IEEE Microw Wirel Components Lett. 2013;23(6):321–323.
  • Brazález AA, Iglesias ER, Kildal P-S. Investigation of transitions for use in inverted microstrip gap waveguide antenna arrays. The 8th European Conference on Antennas and Propagation (EuCAP 2014). April 2014: 995–999.
  • Al Sharkawy M, Kishk AA. Design of waveguide to ridge gap waveguide transition using probe excitation. The 8th European Conference on Antennas and Propagation (EuCAP 2014). April 2014: 946–949.
  • Raza H, Yang J, Kildal P-S, et al. Microstrip-ridge gap waveguide–study of losses, bends, and transition to WR-15. IEEE Trans. Microw. Theory Tech. 2014;62(9):1943–1952.
  • Sorkherizi MS, Kishk AA. Transition from microstrip to printed ridge gap waveguide for millimeter-wave application. 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. July 2015: 1588–1589.
  • Molaei B, Khaleghi A. A novel wideband microstrip line to ridge gap waveguide transition using defected ground slot. IEEE Microw. Wirel. Components Lett. 2015;25(2):91–93.
  • Zhang J, Zhang X, Shen D. Design of substrate integrated gap waveguide. 2016 IEEE MTT-S International Microwave Symposium (IMS). May 2016: 1–4.
  • Brazález AA, Flygare J, Yang J, et al. ‘Design of F-band transition from microstrip to ridge gap waveguide including Monte Carlo assembly tolerance analysis’. IEEE Trans. Microw. Theory Tech. 2016;64(4):1245–1254.
  • Aljarosha A, Maaskant R, Zaman AU, et al. mm-Wave contactless connection for MMIC integration in gap waveguides. 2016 IEEE International Symposium on Antennas and Propagation (APSURSI). June 2016: 253–254.
  • Nandi U, Zaman AU, Vosoogh A, et al. Millimeter wave contactless microstrip-gap waveguide transition suitable for integration of RF MMIC with gap waveguide array antenna. 2017 11th European Conference on Antennas and Propagation (EUCAP). March 2017: 1682–1684.
  • Bayat-Makou N, Kishk AA. ‘Millimeter-wave substrate integrated dual level gap waveguide horn antenna’. IEEE Trans. Antennas Propag. 2017;65(12):6847–6855.
  • Zaman AU, Kildal P-S. Gap waveguides. Handb. Antenna Technol. 2014: 1–61.
  • Brazalez AA, Rajo-Iglesias E, Vazquez-Roy JL, et al. Design and validation of microstrip gap waveguides and their transitions to rectangular waveguide, for millimeter-wave applications’. IEEE Trans Microw Theory Tech. Nov. 2015;63(12):4035–4050.
  • Kildal P-S, Zaman AU, Rajo-Iglesias E, et al. Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microwaves Antennas Propag. 2011;5(3):262–227.
  • Alfonso E, Kildal PS, Valero-Nogueira A, et al. Study of the characteristic impedance of a ridge gap waveguide. 2009 IEEE Antennas and Propagation Society International Symposium. 2009, June: 1–4. IEEE.
  • Huang S, Xie X, Yan B. ‘K band Wilkinson power divider based on a taper equation’. Prog Electromagn Res. 2011;27:75–83.
  • Ji T, Yoon H, Abraham JK, et al. ‘Design of a Ku-band Wilkinson power divider on surface-stabilized high-resistivity Si substrates’. Microw. Opt. Technol. Lett. 2005;44(5):436–439.
  • Peng N, Zhao D. ‘Ku-band compact Wilkinson power divider based on multi-tap inductor technique in 65-nm CMOS’. IEICE Electron. Express. 2018;15(23):1–8.
  • Chen CC, Cin JJ. ‘Design of X-Ku band Wilkinson power divider using synthetic quasi-TEM transmission line’. Adv Mat Res. 2014;1044:287–290.
  • Smith NA, Abhari R. Compact substrate integrated waveguide Wilkinson power dividers. 2009 IEEE Antennas and Propagation Society International Symposium. IEEE, 2009: 1–4.
  • Moulay A, Djerafi T. Wilkinson power divider with fixed width substrate-integrated waveguide line and a distributed isolation resistance. IEEE Microwave Wirel Comp Lett. 2018;28(2):114–1166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.