314
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Broadband microwave absorber using pixelated FSS embedded in CISR sheets in frequency range of 3.95 to 8.2 GHz

ORCID Icon, &
Pages 2349-2367 | Received 28 Jan 2021, Accepted 19 Jun 2021, Published online: 06 Jul 2021

References

  • Lai W, Wang Y, He J. Effects of carbonyl iron powder (CIP) content on the electromagnetic wave absorption and mechanical properties of CIP/ABS composites. Polymers. 2020;12(8):1694.
  • Zhang BS, Feng Y, Xiong H, et al. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. IEEE Trans Magn. 2006;42:1778–1781.
  • Vashisth R, Ghodgaonkar D, Gupta S. Permittivity and Permeability Measurements of CISR sheets for Microwave Absorber Applications. 2018 IEEE International RF and Microwave Conference (RFM); 2018. p. 359–362.
  • Vashisth R, Ghodgaonkar D, Gupta S. Design and Fabrication of Broadband Microwave Absorber using FSS embedded in CISR sheets. 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC); 2018. p. 1–4
  • Michielssen E, Sajer J-M, Ranjithan S, et al. Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans Microw Theory Tech. 1993;41(6):1024–1031.
  • Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties. IEEE Trans Antennas Propag. 2012;60:2740–2747.
  • Panaretos AH, Brocker DE, Werner DH. Ultra-Thin absorbers comprised by cascaded high-Impedance and frequency selective surfaces. IEEE Antennas Wirel Propag Lett. 2015;14:1089–1092.
  • Shang YP, Shen ZX, Xiao SQ. Frequency-selective rasorber based on square-Loop and cross-dipole arrays. IEEE Trans Antennas Propag. 2014;62:5581–5589.
  • Kazantsev YN, Lopatin AV, Kazantseva NE, et al. Broadening of operating frequency band of magnetic-type radio absorbers by FSS incorporation. IEEE Trans Antennas Propag. 2010;58:1227–1235.
  • Sun L, Cheng H, Zhou Y, et al. Design of a lightweight magnetic radar absorber embedded with resistive FSS. IEEE Antennas Wirel Propag Lett. 2012;11:675–678.
  • Rozanov KN. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag. 2000;48:1230–1234.
  • Zhao M, Yu X, Wang Q, et al. Novel absorber based on pixelated frequency selective surface using estimation of distribution algorithm. IEEE Antennas Wirel Propag Lett. 2015;14:1467–1470.
  • Holtby DG, Ford KL, Chambers B. Geometric transition radar absorbing material loaded with a binary frequency selective surface. IET Radar Sonar Navig. 2011;5:483–488.
  • Chakravarty S, Mittra R. Design of a frequency selective surface (FSS) with very low cross-polarization discrimination via the parallel micro-genetic algorithm (PMGA). IEEE Trans Antennas Propag. 2003;51:1664–1668.
  • Tirkey MM, Gupta N. Design simulation and analysis of a polarization-independent ultrathin pixelated metasurface absorber. 2019 IEEE MTT-S International Microwave and RF Conference (IMaRC); 2019. p. 1–4
  • Ghaderi B, Nayyeri V, Soleimani M, et al. Pixelated metasurface for dual-Band and multi-Polarization electromagnetic energy harvesting. Sci Rep. 2018;8:13227.
  • Yuan W, Chen Q, Xu Y, et al. Broadband microwave absorption properties of ultrathin composites containing edge-split square-loop FSS embedded in magnetic sheets. IEEE Antennas Wirel Propag Lett. 2017;16:278–281.
  • Ranjan P, Choubey A, Kumar Mahto S, et al. A six-band ultra-thin polarization-insensitive pixelated metamaterial absorber using a novel binary wind driven optimization algorithm. J Electromagn Waves Appl. 2018;32:2367–2385.
  • Zhang L, Zhou P, Zhang H, et al. A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS. IEEE Trans Magn. 2014;50(5):1–5.
  • Chen H, Zhang H, Deng L. Design of an ultra-Thin magnetic-Type radar absorber embedded with FSS. IEEE Antennas Wirel Propag Lett. 2010;9:899–901.
  • Xu H, Bie S, Jiang J. Ultra-broadband and polarizationinsensitive metamaterial absorber based on frequency selective surface. 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS); 2016. p. 400–402
  • Li SJ, Li YB, Li H, et al. A thin self-Feeding janus metasurface for manipulating incident waves and emitting radiation waves simultaneously. Ann Phys. 2020;532(5):2000020.
  • Li SJ, Li YB, Zhang L, et al. Programmable controls to scattering properties of a radiation array. Laser Photon Rev. 2021;15(2):1863–8880.
  • Ismail K, Ghodgaonkar DK, Awang Z, et al. Microwave detection of rubber filler using rectangular dielectric waveguide. 2005 Asia-Pacific Conference on Applied Electromagnetics, APACE 2005-Proceedings; 2005. p. 161–162.
  • Abbas Z, Pollard RD, Kelsall RW. Complex permittivity measurements at Ka-Band using rectangular dielectric waveguide. IEEE Trans Instrum Meas. 2001;50:1334–1342.
  • Ghodgaonkar DK, Varadan VV, Varadan VK. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans Instrum Meas. 1990;39(2):387–394.
  • Applying TRL Calibration to Noncoaxial Measurement. Hewlett Packard. Product Note 8510-8a. 1988.
  • Costa F, Monorchio A, Manara G. Efficient analysis of frequency-Selective surfaces by a simple equivalent-Circuit model. IEEE Antennas Propag Mag. 2012;54(4):35–48.
  • Costa F, Genovesi S, Monorchio A, et al. A circuit-Based model for the interpretation of perfect metamaterial absorbers. IEEE Trans Antennas Propag. 2013;61(3):1201–1209.
  • Zhang L, Lu H, Zhou P, et al. Oblique incidence performance of microwave absorbers based on magnetic polymer composites. IEEE Trans Magn. 2015;51(11):1–4.
  • Olli L, Maslovski SI, Tretyakov SA. A stepwise Nicolson-Ross-Weir-based material parameter extraction method. IEEE Antennas Wirel Propag Lett. 2011;10:1295–1298.
  • Ohira M, Deguchi H, Tsuji M, et al. Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique. IEEE Trans Antennas Propag. 2004;52(11):2925–2931.
  • Liu N, Sheng X, Zhang C, et al. Design of FSS radome using binary particle swarm algorithm combined with pixel-overlap technique. J Electromagn Waves Appl. 2017;31(5):522–531.
  • Hofmann W, Bornkessel C, Schwind A, et al. Challenges of RF absorber characterization: comparison between RCS- and NRL-Arch-methods. 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE201(9):370-–375.
  • Tao H, Landy NI, Bingham CM, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express. 2008;16:7181–7188.
  • Zhou J, Economon EN, Koschny T, et al. Unifying approach to left-handed material design. Opt Lett. 2006;31:3620–3622.
  • He L, Deng L, Li Y, et al. Wide-angle microwave absorption performance of polyurethane foams combined with cross-shaped metamaterial absorber. Results Phys. 2018;11:769–776.
  • Zhang Zilong, Zhang Lei, Chen Xiqiao, etal. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band. J Magn Magn Mater. 2020;497:166075. DOI:10.1016/j.jmmm.2019.166075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.