553
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Multiband Jerusalem cross-shaped angle insensitive metasurface absorber for X-band application

, ORCID Icon, &
Pages 180-192 | Received 28 Feb 2021, Accepted 21 Jul 2021, Published online: 04 Aug 2021

References

  • Cui TJ, Liu R, Smith DR. Introduction to metamaterials. In: Metamaterials. Boston, MA: Springer; 2010. p. 1–19.
  • Wartak MS, Tsakmakidis KL, Hess O. Introduction to metamaterials. Phys Can. 2011;67(1):30–34.
  • Walia S, Shah CM, Gutruf P, et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro-and nano-scales. Appl Phys Rev. 2015;2(1):011303.
  • Glybovski SB, Tretyakov SA, Belov PA, et al. Metasurfaces: from microwaves to visible. Phys Rep. 2016;634:1–72.
  • Holloway CL, Kuester EF, Gordon JA, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag. 2012;54(2):10–35.
  • Chen HT, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016;79(7):076401.
  • Patel JM, Patel SK, Thakkar FN. Design of S-shaped multiband microstrip patch antenna. 2012 Nirma University International Conference on Engineering (NUiCONE); 2012, December. pp. 1–3. IEEE.
  • Mishra KV, Hodge JA, Zaghloul AI. Reconfigurable metasurfaces for radar and communications systems. URSI Asia-Pacific Radio Science Conference; 2019, March. 1–4.
  • Jadeja R, Charola S, Patel SK, et al. Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber. J Mater Sci. 2020;55(8):3462–3469.
  • Charola S, Patel SK, Dalsaniya K, et al. Numerical investigation of wideband L-shaped metasurface based solar absorber for visible and ultraviolet region. Phys B Condens Matter; 601:412503.
  • Li W, Cheng Y. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt Commun. 2020;462:125265.
  • Wang Q, Cheng Y. Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors. AEU Int J Electron Commun. 2020;120:153198.
  • Cheng Y, Chen F, Luo H. Triple-band perfect light absorber based on hybrid metasurface for sensing application. Nanoscale Res Lett. 2020;15:1–10.
  • Cheng Y, Luo H, Chen F. Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures. J Appl Phys. 2020;127(21):214902.
  • Zhang H, Cheng Y, Chen F. Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik (Stuttg). 2021;229:166300.
  • Zou H, Cheng Y. Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt Mater (Amst). 2019;88:674–679.
  • Neshev D, Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci Appl. 2018;7(1):1–5.
  • Akgol O, Unal E, Altintas O, et al. Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal. Optik (Stuttg). 2018;161:12–19.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402.
  • Chaurasiya D, Ghosh S, Bhattacharyya S, et al. Compact multi-band polarisation-insensitive metamaterial absorber. IET Microw Antennas Propag. 2016;10(1):94–101.
  • Ranjan P, Choubey A, Mahto SK, et al. A novel ultrathin wideband metamaterial absorber for X-band applications. J Electromagn Waves Appl. 2019;33(17):2341–2353.
  • Wang BX, Zhu HX, Huang WQ. Multiple-band ultra-thin perfect metamaterial absorber using analogy split-ring resonators. Plasmonics. 2019;14(6):1789–1800.
  • Xu J, Wang J, Yang R, et al. Frequency-tunable metamaterial absorber with three bands. Optik (Stuttg). 2018;172:1057–1063.
  • Aydin K, Li Z, Sahin L, et al. Negative phase advance in polarization independent, multi-layer negative-index metamaterials. Opt Express. 2008;16(12):8835–8844.
  • Patel SK, Charola S, Jadeja R, et al. Wideband graphene-based near-infrared solar absorber using C-shaped rectangular sawtooth metasurface. Phys E Low-Dimension Syst Nanostructures. 2020;126:114493.
  • Patel SK, Charola S, Parmar J, et al. Broadband metasurface solar absorber in the visible and near-infrared region. Mater Res Express. 2019;6(8):086213.
  • Patel SK, Argyropoulos C. Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators. J Electromagn Waves Appl. 2016;30(7):945–961.
  • Huang H, Xia H, Xie W, et al. Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions. Sci Rep. 2018;8(1):1–10.
  • Fan S, Song Y. Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures. J Appl Phys. 2018;123(8):085110.
  • Lee D, Hwang JG, Lim D, et al. Incident angle-and polarization-insensitive metamaterial absorber using circular sectors. Sci Rep. 2016;6:27155.
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71(3):036617.
  • Xu HX, Wang GM, Qi MQ, et al. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys Rev B. 2012;86(20):205104.
  • Bhattacharyya S, Ghosh S, Vaibhav Srivastava K. Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J Appl Phys. 2013;114(9):094514.
  • Shang S, Yang S, Tao L, et al. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber. AIP Adv. 2016;6(7):075203.
  • Jafari FS, Naderi M, Hatami A, et al. Microwave Jerusalem cross absorber by metamaterial split ring resonator load to obtain polarization independence with triple band application. AEU Int J Electron Commun. 2019;101:138–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.