122
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Development and optimization of microwave guide polarizers using equivalent network method

ORCID Icon, ORCID Icon & ORCID Icon
Pages 682-705 | Received 13 Jun 2021, Accepted 12 Sep 2021, Published online: 21 Sep 2021

References

  • Gao S, Luo Q. Zhu f. Circularly polarized antennas. Chichester: John Wiley & Sons; 2014; 307 p.
  • Stutzman WL. Polarization in electromagnetic systems. Norwood: Artech House; 2018; 352 p.
  • Piltyay SI. Radiation of the thin-walled circular waveguide aperture at co- and crosspolarization. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2009;39:70–76.
  • Piltyay S, Bulashenko A, Fesyuk I, et al. Comparative analysis of compact satellite polarizers based on a guide with diaphragms. Adv Electromagn. 2021;10(2):44–55.
  • Bull JD, Kato H, Jaeger NAF. Asymmetrically strained ridge waveguide for passive polarization conversion. IEEE Photonics Technol. 2008;20(24):2186–2188.
  • Kirilenko AA, Kulik DY, Prikolotin SA, et al. Design and optimization of broadband ridged coaxial waveguide polarizers. Int Kharkov Symp Physics Eng Microw Millimeter Submillimeter Waves. 2013: 445–447.
  • Pollak AW, Jones ME. A compact quad-ridge orthogonal mode transducer with wide operational bandwidth. IEEE Antennas Wirel Propag Lett. 2018;17(3):422–425.
  • Rud LA, Shpachenko KS. Polarizer on sections of square waveguides with inner corner ridges. IEEE International Conference on Antenna Theory and techniques, 2011: 338–340.
  • Rud LA, Shpachenko KS. Polarizers on a segment of square waveguide with diagonally ridges and adjustment iris. Radioelectron Commun Syst. 2012;55(10):458–463.
  • Rud LA, Shpachenko KS. Polarizers on the basis of sections of a square waveguide with diagonally arranged square ridges: an electrodynamics model and characteristic. Telecomm Radio Eng. 2012;75(1):1–9.
  • Ruiz-Cruz JA, Montejo-Garai JR, Leal-Sevillano CA, et al. Orthomode transducers with folded double-symmetry junctions for broadband and compact antenna feeds. IEEE Trans Antennas Propag. 2018;66(3):1160–1168.
  • Serebryannikov AE, Vasylchenko OE, Schunemann K. Fast coupled-integral-equations-based analysis of azimuthally corrugated cavities. IEEE Microw Wirel Compon Lett. 2004;14(5):240–242.
  • Virone G, Tascone R, Baralis M, et al. A novel design tool for waveguide polarizers. IEEE Trans Microw Theory Tech. 2005;53(3):888–894. doi:https://doi.org/10.1109/TMTT.2004.842491.
  • Virone G, Tascone R, Peverine OA, et al. Optimum-iris-set concept for waveguide polarizers. IEEE Microw Wirel Compon Lett. 2007;17(3):202–204. doi:https://doi.org/10.1109/LMWC.2006.890474.
  • Virone G, Tascone R, Peverine OA, et al. Combined-phase-shift waveguide polarizer. IEEE Microw Wirel Compon Lett. 2008;18(8):509–511. doi:https://doi.org/10.1109/LMWC.2008.2001005.
  • Piltyay SI. Enhanced C-band coaxial orthomode transducer. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2014;58:27–34.
  • Piltyay SI. High performance extended C-band 3.4-4.8 GHz dual circular polarization feed system. XI IEEE International Conference on Antenna Theory and Techniques (ICATT), 2017, pp. 284–287.
  • Dubrovka FF, et al. Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds. XI IEEE International Conference on Antenna Theory and Techniques (ICATT), 2017, pp. 277–280.
  • Dubrovka FF, et al. A high performance ultrawideband orthomode transducer and a dual-polarized quad-ridged horn antenna based on it. VIII IEEE International Conference on Antenna Theory and Techniques (ICATT), 2011, pp. 176–178.
  • Kirilenko AA, Rud LA, Stechenko SA, et al. Stepped approximation technique in the problem on polarizer based on circular waveguide with rectangular ridges. 5th IEEE International Conference on Antenna Theory and Techniques (ICATT), 2005.
  • Dubrovka FF, et al. Prediction of eigenmodes cutoff frequencies of sectoral ridged waveguides. International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science (TCSET), February 2012, p. 191.
  • Dubrovka FF, et al. A novel wideband coaxial polarizer. IX International Conference on Antenna Theory and Techniques (ICATT), 2013, p. 473–474.
  • Piltyay SI, Dubrovka FF. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2013;54:13–23.
  • Dubrovka FF, et al. Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 2. Numerical results. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2013;55:13–23.
  • Dubrovka FF, et al. Eigenmodes of coaxial quad-ridged waveguides. Theory. Radioelectron Commun Syst. 2014;57(1):1–30. doi:https://doi.org/10.3103/S0735272714010014.
  • Dubrovka FF, et al. Eigenmodes of coaxial quad-ridged waveguides. Numerical results. Radioelectron Commun Syst. 2014;57(2):59–69. doi:https://doi.org/10.3103/S0735272714020010.
  • Dubrovka FF, et al. Boundary problem solution for eigenmodes in coaxial quad-ridged waveguides. Inf Telecomm Sci. 2014;5(1):48–61. doi:https://doi.org/10.20535/2411-2976.12014.48-61.
  • Dubrovka FF, et al. Electrodynamics boundary problem solution for sectoral coaxial ridged waveguides by integral equation technique. Radioelectron Commun Syst. 2012;55(5):191–203. doi:https://doi.org/10.3103/S0735272712050019.
  • Dubrovka FF, et al. Eigenmodes of sectoral coaxial ridged waveguides. Radioelectron Commun Syst. 2012;55(6):239–247. doi:https://doi.org/10.3103/S0735272712050015.
  • Bulashenko AV, et al. Technique of mathematical synthesis of waveguide iris polarizers. J Nano- Electronic Phys. 2021;13(5).
  • Chittora A, Yadav SV. A compact circular waveguide polarizer with higher order mode excitation. International Conference on Electronics Computing and Communication, 2020.
  • Arnieri E, Greco F, Boccia L, et al. A SIW-based polarization rotator with an application to linear-to-circular dual-band polarizers at K-/Ka-band. IEEE Trans Antennas Propag. 2020;68(5):3730–3738. doi:https://doi.org/10.1109/TAP.2020.2963901.
  • Haas D, Marek A, Thumm M, et al. Broadband polarizer miter bend for high-power radar applications. German Microwave Conference; Cottbus, 2020.
  • Piltyay S, Bulashenko A, Demchenko I. Wireless sensor network connectivity in heterogeneous 5G mobile systems. IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 2020: 625–630.
  • Bulashenko A, Piltyay S, Demchenko I. Energy efficiency of the D2D direct connection system in 5G networks IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T)2020.
  • Zheng SY, Chan WS, Man KF. Broadband phase shifter using loaded transmission line. IEEE Microw Wirel Compon Lett. 2010;20(9):498–500.
  • Polishchuk A, et al. Compact posts-based waveguide polarizer for satellite communications and radar systems. IEEE 3rd Ukraine Conference on Electrical and Computer Engineering, 2021.
  • Bulashenko AV, et al. Wave matrix technique for waveguide iris polarizers simulation. Numerical results. J Nano- Electronic Phys. 2021;13(5).
  • Prikolotin SA, Kirilenko AA. Mode matching technique allowance for field singularities as applied to inner problems with arbitrary piecewise-coordinate boundaries: part 1. Eigenmode spectra of orthogonic waveguides. Telecomm Radio Eng. 2011;70(11):937–958.
  • Steshenko SO, Prikolotin SA, et al. Partial domain technique considering field singularities in the internal problems with arbitrary piecewise-coordinate boundaries: part 2. Plane-transverse junctions and “in-line objects”. Telecomm Radio Eng. 2014;73(3):187–201.
  • Sun W, Balanis CA. MFIE analysis and design of ridged waveguides. IEEE Trans Microw Theory Tech. 1993;41(11):1965–1971.
  • Piltyay SI. Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides. 14-th International Conference on Mathematical Methods in Electromagnetic Theory 2012, pp. 492–495.
  • Amari S, Bornemann J, Vahldieck R. Application of a coupled-integral-equations technique to ridged waveguides. IEEE Trans Microwave Theory Tech. 1996;44(12):2256–2264.
  • Kirilenko AA, Senkevich SL, Steshenko SO. Application of the generalized scattering matrix technique for the dispersion analysis of 3D slow-wave structures. Telecomm Radio Eng. 2015;74(17):1497–1511.
  • Kirilenko A, et al. Evanescent-mode ridged waveguide bandpass filters with improved performance. IEEE Trans Microw Theory Tech. 2002;50(5):1324–1327.
  • Piltyay S. Square waveguide polarizer with diagonally located irises for Ka-band antenna systems. Adv Electromagn. 2021;10(3).
  • Piltyay S, Bulashenko A, et al. Analytical modeling and optimization of new Ku-band tunable square waveguide iris-post polarizer. Int J Numer Modell Electronic Netw Dev Fields. 2021;34(5):1–27. doi:https://doi.org/10.1002/JNM.2890.
  • Naydenko V, et al. Evolution of radiopulses radiated by Hertz’s dipole in vacuum. 12-th International Conference on Mathematical Methods in Electromagnetic Theory (MMET); Odesa, Ukraine, 2008, pp. 294–297.
  • Dubrovka FF, et al. Analytical and numerical method of constructive synthesis of optimal polarizers based on three irises in square waveguide. Radioelectron Commun Syst 2021;64(4):204–215. doi:https://doi.org/10.3103/S073527272104004X.
  • Bulashenko A, Piltyay S, Bulashenko O. Mathematical model of a square waveguide polarizer with diaphragms. J Microw Optoelectronics Electromagn Appl. 2021;20(4).
  • Bulashenko AV, et al. Waveguide polarizer for radar and satellite systems. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2021;86.
  • Kirilenko AA, et al. A tunable compact polarizer in a circular waveguide. IEEE Trans Microw Theory Tech. 2019;67(2):592–596. doi:https://doi.org/10.1109/TMTT.2018.2881089.
  • Sushko O, et al. Symmetrically fed 1-10 GHz log-periodic dipole antenna array feed for reflector antennas. IEEE Ukrainian Microwave Week, Kharkiv, Ukraine. 2020: 222–225.
  • Kulik DYu, Mospan LP, Perov AO, et al. Compact-size polarization rotators on the basis of irises with rectangular slots. Telecomm Radio Eng. 2016;75(1):1–9.
  • Kulik DY, Steshenko SA, Kirilenko AA. Compact polarization plane rotator at a given angle in the square waveguide. Telecomm Radio Eng. 2017;76(10):855–864. doi:https://doi.org/10.1615/TelecomRad-Eng.v76.i10.20.
  • Lyu Y-P, Zhu L, Cheng C-H. Proposal and synthesis design of differential phase shifters with filtering function. IEEE Trans. Microwave Theory Techniques. 2017;65(8):2906–2917.
  • Piltyay S, et al. Electromagnetic simulation of new tunable guide polarizers with diaphragms and pins. Adv Electromagn. 2021;10(3).
  • Mospan LP, et al. Rectangular waveguide section with a pair of antipodal posts: spectral characteristics. X IEEE International Conference on Antenna Theory and techniques, 2015.
  • Bulashenko AV. Combined criterion for the choice of routing based on D2D technology. Radio Electronics Computer Sci Contr. 2021;1(1):7–13. doi:https://doi.org/10.15588/1607-3274-2021-1-1.
  • Piltyay S, Bulashenko A, Herhil Y. Numerical performance of FEM and FDTD methods for the simulation of waveguide polarizers. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2021;84:11–21.
  • Bulashenko AV, Piltyay SI, Demchenko IV. Wave matrix technique for waveguide iris polarizers simulation. Theory. J Nano- Electron Physics. 2020;12(6):06026-1–06026-5. doi:https://doi.org/10.21272/jnep.12(6).06026.
  • Bulashenko AV, Piltyay SI, Demchenko IV. Analytical technique for iris polarizers development. IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 2020, pp. 593–598.
  • Bulashenko AV, Piltyay SI. Equivalent microwave circuit technique for waveguide iris polarizers development. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2020;83:17–28.
  • Piltyay SI, Bulashenko AV, Demchenko IV. Analytical synthesis of waveguide iris polarizers. Telecomm Radio Eng. 2020;79(18):1579–1597. doi:https://doi.org/10.1615/TelecomRadEng.v79.i18.10.
  • Piltyay SI, Bulashenko AV, Demchenko IV. Waveguide iris polarizers for Ku-band satellite antenna feeds. J Nano- Electronic Phys. 2020;12(5):05024-1–05024-5, doi:https://doi.org/10.21272/jnep.12(5).05024.
  • Piltyay SI, Sushko OYu, Bulashenko AV, et al. Compact Ku-band iris polarizers for satellite telecommunication systems. Telecomm Radio Eng. 2020;79(19):1673–1690. doi:https://doi.org/10.1615/TelecomRad-Eng.v79.i19.10.
  • Piltyay SI, Bulashenko AV, Demchenko IV. Compact polarizers for satellite information systems. IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), p. 557–562.
  • Bulashenko AV. Evaluation of D2D communications in 5G networks. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2020;81:21–29.
  • Deutschmann B, Jacob AF. Broadband septum polarizer with triangular common port. IEEE Trans Microw Theory Tech. 2020;68(2):693–700. doi:https://doi.org/10.1109/TMTT.2019.2951138.
  • Dubrovka F, et al. Circularly polarised X-band H11- and H21-modes antenna feed for monopulse autotracking ground station. IEEE Ukrainian Microwave Week (UkrMW). 2020: 196–202. doi:https://doi.org/10.1109/UkrMW49653.2020.9252600.
  • Dubrovka FF, et al. Optimum septum polarizer design for various fractional bandwidths. Radioelectron Commun Syst. 2020;63(1):15–23. doi:https://doi.org/10.3103/I07352720010021.
  • Dubrovka F, et al. Compact X-band stepped-thickness septum polarizer. IEEE Ukrainian Microwave Week (UkrMW). 2020: 135–138. doi:https://doi.org/10.1109/UkrMW49653.2020.9252583.
  • Bulashenko A, Piltyay S, Polishchuk A, et al. New traffic model of M2M technology in 5G wireless sensor networks. IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT), 2020: 125–131.
  • Piltyay S. Circular waveguide polarizer for weather radars and satellite information systems.J Microwav Optoelectronics Electromagn Appl. 2021;20(3).
  • Piltyay S, Bulashenko A, Kushnir H, et al. New tunable iris-post square waveguide polarizers for satellite information systems. IEEE 2nd International Conference on Advanced Trends in Information Theory, 2020: 342–348.
  • Bulashenko A, Piltyay S, Kalinichenko Y, et al. Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers. IEEE 2nd International Conference on Advanced Trends in Information Theory, 2020: 330–336.
  • Piltyay S, Bulashenko A, Herhil Y, et al. FDTD and FEM simulation of microwave waveguide polarizers. IEEE 2nd International Conference on Advanced Trends in Information Theory, 2020: 357–363.
  • Wang X, et al. Novel square/rectangle waveguide septum polarizer. IEEE International Conference on Ubiquitous Wireless Broadband, 2016.
  • Collin RE. Foundations for microwave engineering. New Jersey: John Wiley & Sons; 2001;945 p.
  • Maas SA. Practical microwave circuits. Norwood: Artech House; 2014; 352 p.
  • Marcuvitz N. Waveguide handbook. London: Peter Peregrinus; 1993.
  • Feldshtein AL, Yavich LR, Smirnov VP. Guide to the elements of waveguide technology. Moscow: Soviet Radio; 1967; (in Russian).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.