556
Views
2
CrossRef citations to date
0
Altmetric
Invited Review Article

Metamaterial assisted microwave tubes: a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1189-1211 | Received 25 Jul 2021, Accepted 06 Dec 2021, Published online: 19 Dec 2021

References

  • Carter RG. Microwave and RF vacuum electronic power sources. Cambridge: Cambridge Univ. Press; 2018.
  • Gilmour AS, Jr. Microwave and millimeter-wave vacuum electron devices: inductive output tubes, klystrons, traveling-wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons. Norwood (MA): Artech House; 2020.
  • Bose JC. On the rotation of plane of polarization of electric wave by a twisted structure. Proc Royal Soc. 1898;63:146–152.
  • Engheta N, Ziolkowski RW. Metamaterials: physics and engineering explorations. New Jersey: IEEE Press/John Wiley & Sons; 2006.
  • Guha R, Basu BN. Chapter 2, Review of effective medium theory and parametric retrieval techniques of metamaterials. In: Choudhury PK, editor. Metamaterials: technology and applications. Boca Raton (FL): CRC Press; 2021. p. 31–60.
  • Caloz C. Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach. New Jersey: Wiley; 2006.
  • Guha R, Bandyopadhyay AK, Varshney AK, et al. Investigations into helix slow-wave structure assisted by double-negative metamaterial. IEEE Tran Electron Devices. 2018;65(11):5082–5088.
  • Datta SK, Kumar L, Basu BN. Investigation into a metamaterial supported helix slow-wave structure. In: Proc. IEEE Int. Vac. Electron. Conf. (IVEC); Bangalore, India; 2011. p. 211–212.
  • Varshney AK, Guha R, Datta SK, et al. Dispersion control of helical slow-wave structure by double-negative metamaterial loading. J Electromag Waves Appl. 2016;30(10):1308–1320.
  • Varshney AK, Guha R, Biswas S, et al. Tape-helix model of analysis for the dispersion and interaction impedance characteristics of a helix loaded with a double-negative metamaterial for potential application in vacuum electron devices. J Electromag Waves Appl. 2019;33(2):138–150.
  • Shiffler D, Luginsland J, French DM, et al. A Cerenkov-like maser based on a metamaterial structure. IEEE Trans Plasma Sci. 2010;38(6):1462–1465.
  • French DM, Shiffler D, Cartwright K. Electron beam coupling to a metamaterial structure. Phys Plasmas. 2013;20(8):083116.
  • Lipton R, Polizzi A. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures. J Appl Phy. 2014;116(14):144504.
  • Rashidi A, Behdad N. Metamaterial-enhanced travelling wave tubes. In: Proc. IEEE Int. Vac. Electron. Conf. (IVEC); Monterey, CA, USA; 2014. p. 199–200.
  • Tan YS, Seviour R. Wave energy amplification in a metamaterial-based traveling-wave structure. Europhys Lett. 2009;87(3):34005.
  • Esteban J, Camacho-Penalosa C, Page J, et al. Simulation of negative permittivity and negative permeability by means of evanescent waveguide modes—theory and experiment. IEEE Trans Microw Theory Techn. 2005;53(4):1506–1514.
  • Nefedov IS, Dardenne X, Craeye C, et al. Backward waves in a waveguide, filled with wire media. Microw Opt Technol Lett. 2006;48(12):2560–2564.
  • Xu H, Wang Z, Hao J, et al. Effective-medium models and experiments for extraordinary transmission in metamaterial-loaded waveguides. Appl Phys Lett. 2008;92(4):041122.
  • Shapiro MA, Trendafilov S, Urzhumov Y, et al. Active negative-index metamaterial powered by an electron beam. Phys Rev B Condens Matter. 2012;86(8):085132.
  • Duan Z, Hummelt JS, Shapiro MA, et al. Subwavelength waveguide loaded by a complementary electric metamaterial for vacuum electron devices. Phys Plasmas. 2014;21(10):103301.
  • Hummelt JS, Lewis SM, Shapiro MA, et al. Design of a metamaterial-based backward wave oscillator. IEEE Trans Plasma Sci. 2014;42(4):930–936.
  • Wang Y, Duan Z, Tang X, et al. All-metal metamaterial slow-wave structure for high-power sources with high efficiency. Appl Phys Lett. 2015;107(15):153502.
  • Hummelt JS, Lu X, Xu H, et al. Coherent Cherenkov-cyclotron radiation excited by an electron beam in a metamaterial waveguide. Phys Rev Lett. 2016;117(23):237701.
  • Duan Z, Tang X, Wang Z, et al. Observation of the reversed Cherenkov radiation. Nature Commun. 2017;8:14901.
  • Tang X, Duan Z, Ma X, et al. Dual band metamaterial Cherenkov oscillator with a waveguide coupler. IEEE Trans Electron Devices. 2017;64(5):2376–2382.
  • Wu G, Li Q, Lei X, et al. Design of a cascade backward-wave oscillator based on metamaterial slow-wave structure. IEEE Trans Electron Devices. 2018;65(3):1172–1178.
  • Dai O, He J, Ling J, et al. A novel L-band slow wave structure for compact and high-efficiency relativistic Cerenkov oscillator. Phys Plasmas. 2018;25(9):093103.
  • Dai O, He J, Ling J, et al. A novel L-band metamaterial relativistic Cherenkov oscillator with high conversion efficiency. Phys Plasmas. 2019;26(2):023104.
  • Lu X, Shapiro MA, Temkin RJ. Linear theory of instabilities generated by an electron beam in a metamaterial-loaded waveguide. Phys Plasmas. 2019;26(3):033104.
  • de Alleluia AB, Abdelshafy AF, Ragulis P, et al. Experimental testing of a 3-D-printed metamaterial slow wave structure for high-power microwave generation. IEEE Trans Plasma Science. 2020;48(12):4356–4364.
  • Narasimhan P, Jain S, Gurjar N, et al. Design of thin wire metamaterial-based interaction structure for backward wave generation. IEEE Trans Electron Devices. 2020;67(3):1227–1233.
  • Wang Y, Duan Z, Wang F, et al. S-band high-efficiency metamaterial microwave sources. IEEE Trans Electron Devices. 2016;63(9):3747–3752.
  • Yurt SC, Fuks MI, Prasad S, et al. Design of a metamaterial slow wave structure for an O-type high power microwave generator. Phys Plasmas. 2016;23(12):123115.
  • Liu M, Schamiloglu E, Yurt SC, et al. Coherent Cherenkov-cyclotron radiation excited by an electron beam in a two-spiral metamaterial waveguide. AIP Adv. 2018;8(11):115107.
  • Seidfaraji H, Elfrgani A, Christodoulou C, et al. A multibeam metamaterial backward wave oscillator. Phys Plasmas. 2019;26(7):073105.
  • Liu M, Schamiloglu E, Wang C, et al. PIC simulation of the coherent Cerenkov-cyclotron radiation excited by a high-power electron beam in a crossed-elliptical metamaterial oscillator at S-band. IEEE Trans Plasma Science. 2021;49:3351–3357.
  • Rowe T, Booske JH, Behdad N. Metamaterial-enhanced resistive wall amplifiers: theory and particle-in-cell simulations. IEEE Trans Plasma Sci. 2015;43(7):2123–2131.
  • Rowe T, Behdad N, Booske JH. Metamaterial-enhanced resistive wall amplifier design using periodically spaced inductive meandered lines. IEEE Trans Plasma Sci. 2016;44(10):2476–2484.
  • Rowe T, Forbes P, Booske JH, et al. Inductive meandered metal line metamaterial for rectangular waveguide linings. IEEE Trans Plasma Sci. 2017;45(4):654–664.
  • Fu W, Hu S, Zhang C, et al. Study on a quasi-optical mode converter for gyrotron based on metamaterial. In: 44th Int. Conf. Infr., Millim., and Tera. Waves (IRMMW-THz); 2019. p. 1–2.
  • Duan Z, Shapiro MA, Schamiloglu E, et al. Metamaterial-inspired vacuum electron devices and accelerators. IEEE Trans Electron Devices. 2019;66(1):207–218.
  • Duan Z, Wu B-I, Lu J, et al. Cherenkov radiation in anisotropic double-negative metamaterials. Opt Express. 2008;16(22):18479–18484.
  • Duan Z, Wu B-I, Lu J, et al. Reversed Cherenkov radiation in a waveguide filled with anisotropic double negative metamaterials. J Appl Phys. 2008;104(6):063303.
  • Duan Z, Wu B-I, Lu J, et al. Reversed Cherenkov radiation in unbounded anisotropic double-negative metamaterials. J Phys D Appl Phys. 2009;42(18):185102.
  • Duan Z, Wu B-I, Xi S, et al. Research progress in reversed Cherenkov radiation in double-negative metamaterials. Prog Electromagn Res. 2009;90:75–87.
  • Averkov YO, Yakovenko VM. Cherenkov radiation by an electron bunch that moves in a vacuum above a left-handed material. Phys Rev B. 2005;72(20):205110.
  • Hummelt J, Lewis S, Xu H, et al. Fabrication and test of a high power S-band metamaterial backward-wave oscillator. In: Proc. IEEE Int. Vac. Electron. Conf. (IVEC); 2015. p. 1–2.
  • Prasad S, Yurt S, Shipman K, et al. A compact high-power microwave metamaterial slow-wave structure: from computational design to hot test validation. In: Proc. CEIW; Barcelona, Spain; 2017. p. 61–62.
  • Wang X, Li S, Zhang X, et al. Novel S-band metamaterial extended interaction klystron. IEEE Electron Dev Lett. 2020;41(10):1580–1583.
  • Esfahani NN. Low-current cathode spatial harmonic magnetrons: analysis and realization based on metamaterial loaded slow wave structures. Int J Micro Wire Tech. 2018;10(5-6):613–619.
  • Bai N, Feng C, Liu Y, et al. Integrated microstrip meander line traveling wave tube based on metamaterial absorber. IEEE Trans Electron Devices. 2017;64(7):2949–2954.
  • Bai N, Xiang W, Shen J, et al. A Ka-band folded waveguide traveling wave tube with lumped resistance metamaterial absorber. IEEE Trans Electron Devices. 2020;67(3):1248–1253.
  • Bai N, Shen J, Fan H, et al. A broad bandwidth metamaterial pillbox window for w-band traveling-wave tubes. IEEE Trans Electron Devices Lett. 2021;42(8):1228–1231.
  • Andreev AD, Hendricks KJ. Metamaterial-like cathodes in multicavity magnetrons. IEEE Trans Plasma Sci. 2012;40(9):2267–2273.
  • Abu-elfadl TA, Nusinovich GS, Shkvarunets AG, et al. Efficiency of helix PASOTRON backward-wave oscillator. IEEE Trans Plasma Sci. 2002;30(3):1126–1133.
  • Benford J, Swegle JA, Schamiloglu E. High power microwaves. 3rd ed. New York: CRC Press; 2015.
  • Garate E, Cook R, Heim P, et al. Cerenkov maser operation at lower-mm wavelengths. J Appl Phys. 1985;58(2):627–632.
  • Carlsten BE. Small-signal analysis and particle-in-cell simulations of planar dielectric Cherenkov masers for use as high-frequency, moderate power broadband amplifiers. Phys Plasmas. 2002;9(5):1790–1800.
  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996;76(25):4773–4776.
  • Pendry JB, Holden AJ, Robbins DJ, et al. Low frequency plasmons in thin-wire structures. J Phys Condens Matter. 1998;10(22):4785–4809.
  • Pendry JB, Martin-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science. 2004;305(5685):847–848.
  • Friedman M, Serlin V, Lampe M, et al. Intense electron beam modulation by inductively loaded wide gaps for relativistic klystron amplifiers. Phys Rev Lett. 1995;74(2):322–325.
  • Marqués R, Martel J, Mesa F, et al. Left-handed-media simulation and transmission of EM waves in sub-wavelength split-ring resonator-loaded metallic waveguides. Phys Rev Lett. 2002;89(18):183901.
  • Hrabar S, Bartolic J, Sipus Z. Waveguide miniaturization using uniaxial negative permeability metamaterial. IEEE Trans Antennas Propag. 2005;53(1):110–119.
  • Birdsall CK, Brewer GR, Haeff AV. The resistive-wall amplifier. Proc IRE. 1953;41(7):865–875.
  • Birdsall CK, Whinnery JR. Waves in an electron stream with general admittance walls. J Appl Phys. 1953;24(3):314–323.
  • Thumm M. Chapter 13, High-power microwave transmission systems, external mode converters and antenna technology. In: CJ Edgombe, editor. Gyrotron oscillators: their principles and practice. London: Taylor & Francis; 1993. p. 365–401.
  • Cherenkov PA. Visible emission of clean liquids by action of γ radiation. Dokl Akad Nauk SSSR. 1934;2:451–454.
  • Frank IM, Tamm IE. Coherent visible radiation of fast electrons passing through matter. Dokl Akad Nauk SSSR. 1937;14:109–114.
  • Ginzburg VL. The quantum theory of light radiation of an electron uniformly moving in a medium. J Phys (Mosc). 1940;2:441–452.
  • Veselago VG. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi. 1968;10(4):509–514.
  • Hoff B. Air force research laboratory. Private communication; 2018.
  • Avtomonov NI, Naumenko VD, Vavriv DM, et al. Toward terahertz magnetrons: 210 GHz spatial harmonic magnetron with cold cathode. IEEE Trans Electron Devices. 2012;59(12):3608–3611.
  • Esfahani NN, Schunemann K. Particle-in-cell simulations of a spatial-harmonic magnetron with a cold secondary emission cathode. IEEE Trans Plasma Sci. 2012;40(12):3512–3519.
  • Esfahani NN, Schunemann K. Design and simulation of a π/2-mode spatial-harmonic magnetron. Int J Electron Commun (AEÜ). 2013;67(5):426–432.
  • Webber SE. Calculation of wave propagation on a helix in the attenuation region. IEEE Trans Electron Devices. 1954;ED-1(3):35–39.
  • Jain PK, Basu BN. A theory of the attenuator-coated helical slow-wave structure of a traveling-wave tube. IEEE Trans Electron Devices. 1988;35(10):1750–1757.
  • Duan Z, Gong Y, Wang W, et al. Accurate tape analysis of the attenuator-coated helical slow-wave structure. IEEE Trans Electron Devices. 2006;53(4):903–909.
  • Zhang L, Donaldson CR, Cross AW, et al. A pillbox window with impedance matching sections for a W-band gyro-TWA. IEEE Electron Device Lett. 2018;39(7):1081–1084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.