130
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of meteorological parameters on the propagation of lightning electromagnetic fields

, &
Pages 1323-1338 | Received 18 Jul 2021, Accepted 25 Dec 2021, Published online: 12 Jan 2022

References

  • Seidl S. Pathological features of death from lightning strike. Forensic Pathol Rev. 2006;4:3–23.
  • Cooray GV. The lightning flash, 2nd ed. IET, 2014. (IET Power And Energy Series; 69).
  • Chen Y. Approximate expressions for lightning electromagnetic fields at near and far ranges: influence of return-stroke speed. J Geophys Res: Oceans. 2014;119:2439–2461.
  • Cooray GV. The lightning flash. IET, 2012. (IET Power And Energy Series; 62).
  • Abdou AA, Shaw A, Mason A, et al. Electromagnetic (EM) wave propagation for the development of an underwater wireless sensor network (WSN). Proceedings of IEEE SENSORS Conferenc. 2011;1571–1574.
  • Dikun J, Jankunas V, Guseinoviene E, et al. Effects of weather conditions on electromagnetic field parameters. Proceedings of the Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER); 2015. p. 8–10.
  • Linlor W, Jiracek G. Electromagnetic reflection from multi-Layered snow models. J Glaciol. 1975;14(72):501–515.
  • Omidiora MA, Lehtonen M. A comparative study on the shielding effect of tree, concrete building on direct lightning strokes to medium voltage distribution line. 40th North American Power Symposium; NAPS2008. 2008. p. 1–7.
  • Fares MA, Fares SC, Ventrice CA. Attenuation of the electromagnetic waves due to moist and wet snow. Proc IEEE SOUTHEASTCON. 2007;1:99–104.
  • Rachidi F, Nucci CA, Ianoz M, et al. Influence of a Lossy ground on lightning- induced voltages on overhead lines. IEEE Trans Electromagn Compat. 1996;38(3):250–264.
  • Cooray V, Fernando M, Sorensen T, et al. Propagation of lightning generated transient electromagnetic fields over finitely conducting ground. J Atmos Sol-Terr Phys. 2000;62(7):583–600.
  • Li D, Azadifar M, Rachidi F, et al. On lightning electromagnetic field propagation along an irregular terrain. IEEE Trans Electromagn Compat. 2016;58(1):161–171.
  • Shoory A, Mimouni A, Rachidi F, et al. Validity of simplified approaches for the evaluation o.f lightning electromagnetic fields above a horizontally stratified ground. IEEE Trans Electromagn Compat. 2010;52(3):657–663.
  • Sheshyekani K, Paknahad J. Lightning electromagnetic fields and their induced voltages on overhead lines: the effect of a horizontally stratified ground. IEEE Trans Power Deliv. 2015;30(1):290–298.
  • Borge R, Requia WJ, Yage C. Impact of weather changes on air quality and related mortality in Spain over 25 year period [1993-2017] Environment International. 2019 133, Part B.
  • Gedney SD. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. San Rafael, CA: Morgan & Claypool; 2011.
  • Archambeault B, Ramahi OM, Brench C. The finite-difference time-domain method. EMIEMC computational modeling handbook. Boston (MA): Springer; 1998.
  • Larson MG, Bengzon F. The finite element method: theory, implementation, and applications. Berlin: Springer; 2013.
  • Weiland T. Finite integration method and discrete electromagnetism. In: Monk P, Carstensen C, Funken S, editors. Computational electromagnetics. Berlin: Springer; 2003. (Lecture Notes in Computational Science and Engineering; 28).
  • Clemens M, Weiland T. Discrete electromagnetism with the finite integration technique. Prog Electromagn Res. 2001;32:65–87.
  • Harrington RF. The method of moments in electromagnetics. J Electromagn Waves Appl. 1987;1(3):181–200.
  • Rachidi F, Nucci CA, Ianoz M, et al. Influence of a lossy ground on lightning-induced voltages on overhead lines. IEEE Trans Electromagn Compat. 1996;38(3):250–264.
  • Plooster MN. Numerical model of the return stroke of the lightning discharge. Phys Fluids. 1971;14:10.
  • Moini R, Rakov VA, Uman MA, et al. Anantenna theory model for the lightning return stroke. Proceedings of the 12th International. Zurich Symposium. on ElectromagneticCompatibility; Zurich, Switzerland: 1997. p. 149–152.
  • Moini R, Sadeghi SHH, Kordi B. An electromagnetic model of lightning return stroke channel using electric field integral equation in time domain. Eng Anal Bound Elem. 2003;27(4):305–314.
  • Paul CR. Analysis of multiconductor transmission lines. New York: Wiley-Interscience; 1994.
  • Rakov VA. Lightning electromagnetic fields: modeling and measurements. Proceedings of the 12th International. Zurich Symposium on Electromagnetic Compatibility; Zurich, Switzerland: 1997. p. 59–64.
  • Uman A, McLain DK. Magnetic field of lightning return stroke. J Geophys Res. 1969;74(28):6899–6910.
  • Conti De, Silveira FH, Visacro S. Transmission line models of lightning return stroke. In: Cooray V, editors. Lightning electromagnetics. London: The Institution of Engineering and Technology; 2012. p. 389–425.
  • Rakov A, Dulzon AA. A modified transmission line model for lightning return stroke field calculations. Proceedings of the 9th International Symposium on Electromagnetic Compatibility; paper 44H1, Zurich, Switzerland: 1991.
  • Nucci A, Mazzetti C, Rachidi F. On lightning return stroke models for LEMP calculations. Proceedings of the 19th International Conference on Lightning Protection; 1988. p. 463–469.
  • Rakov A. Engineering models of the return stroke. Proceedings of the VII International Symposium on Lightning Protection; 2003. p. 511–530.
  • Thottappillil R, Rakov VA. On different approaches to calculating lightning electric fields. J Geophys Res. 2001;106:14191–14205.
  • Rakov V. Lightning return stroke speed. J Lightning Res. 2007;1:80–89.
  • Zhang YF, Zhang EC, Gu JL. Evaluation of horizontal electric field from the lightning channel by electromagnetic field equations of moving charges. Math Probl Eng. 2019;2019:4091586. Article ID
  • Paknahad J, Sheshyekani K, Rachidi F. Lightning electromagnetic fields and their induced currents on buried cables. Part I: the effect of an ocean-Land mixed propagation path. IEEE Trans Electromagn Compat. 2014;56(5):1137–1145.
  • Chen Y, Wang X, Rakov VA. Approximate expressions for lightning electromagnetic fields at near and far ranges: influence of return stroke speed. J Geophys Res: Atmos. 2015;120:2855–2880.
  • Heidler F, Cveti J. A class of analytical functions to study the lightning effects associated with the current front. Eur Trans Electr Power. 12 2002;12:141–150.
  • Heidler H. Analytische Blitzstromfunktion zur LEMP-Berechnung, 18th ICLP 1985.
  • Lovric D, Vujevic S, Modric T. On the estimation of Heidler function parameters for reproduction of various standardized and recorded lightning current waveshapes. Int Trans Electr Energy Syst. 2011;23(2):290–300.
  • Uman MA, McLain DK. Lightning return stroke current from magnetic and radiation field measurements. J Geophys Res. 1970;75:5143–5147.
  • Uman MA, McLain DK, Krider EP. The electromagnetic radiation from a finite antenna. Am J Phys. 1975;43:33–38.
  • Thottappillil R, Uman MA, Rakov VA. Treatment of retardation effects in calculating the radiated electromagnetic fields from the lightning discharge. J Geophys Res Atmos. 1988;103(D8):9003–9013.
  • Cooray C. Application of electromagnetic fields of an accelerating charge to obtain the electromagnetic fields of a propagating current pulse. In: Cooray V, editor. The Lightning Electromagnetics. London, UK: IET; 2012.
  • Tetens O. Uber einige meteorologische begriffe. Z Geophys. 1930;6:297–309.
  • Xu J, Wei Q, Peng S, et al. Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Eng. 2011;28:43–48.
  • Ida N. Sensors, actuators, and their interfaces: a multidisciplinary introduction. Edison (NJ): Scitech Publishing; 2013.
  • Murray FW. On the computation of saturation vapor pressure. J Appl Meteorol. 1967;6(1):203–204.
  • IDA NATHAN. Lectures and courses. [Online] Available from: http://ee.ascs3.uakron.edu/ida/sensors.html.
  • Zarnik MS, Belavic D. An experimental and numerical study of the humidity effect on the stability of a capacitive ceramic pressure sensor. Radioengineering. 2012;21(1):201–206.
  • Delfino F, Procopio R, Rossi M, et al. An algorithm for the exact evaluation of the underground lightning electromagnetic fields. IEEE Trans Electromagn Compat. 2007;49(2):401–411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.