341
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators

ORCID Icon & ORCID Icon
Pages 1339-1351 | Received 20 Jun 2021, Accepted 28 Dec 2021, Published online: 07 Jan 2022

References

  • Cisco. Cisco Annual Internet Report (2018–2023). (2020). Available from: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf.
  • Ghadi A. All-optical computing circuits half-subtractor and comparator based on soliton interactions. Optik. 2021;227:166079.
  • Xiang S, Han Y, Song Z, et al. A review: photonics devices, architectures, and algorithms for optical neural computing. J Semicond. 2021;42:023105.
  • Shastri BJ, Tait AN, Ferreira de Lima T, et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics. 2021;15:102–114.
  • Starodubtsev E. Transmission of layered nanoresonators including epsilon-near-zero metamaterials: interference-enabled opportunities to realize ultrathin polarization converters. J Electromagn Waves Appl. 2021;35:766–783.
  • Dolatabady A, Granpayeh N, Abedini M. Frequency-tunable logic gates in graphene nano-waveguides. Photonic Netw Commun. 2020;39:187–194.
  • Verre R, Baranov DG, Munkhbat B, et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat Nanotechnol. 2019;14:679–683.
  • Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol. 2016;11:23–36.
  • Modi KS, Singh SP, Kaur J, et al. All dielectric metasurface based tunable optical modulator: design and analysis. Photonics Nanostructures - Fundam Appl. 2021;43:100881.
  • Gao Z, Xu L, Wang Z. Broadband plasmonic nanoantenna for magnetic field enhancement. J Electromagn Waves Appl. 2011;25:2341–2352.
  • Tuniz A. Nanoscale nonlinear plasmonics in photonic waveguides and circuits. La Riv del Nuovo Cim. 2021;44:193–249.
  • Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv Mater. 2013;25:3264–3294.
  • Kruk S, Kivshar Y. Functional meta-optics and nanophotonics govern by Mie resonances. ACS Photonics. 2017;4:2638–2649.
  • Baranov DG, Zuev DA, Lepeshov SI, et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica. 2017;4:814.
  • Staude I, Pertsch T, Kivshar YS. All-dielectric resonant meta-optics lightens up. ACS Photonics. 2019;6:802–814.
  • Kuznetsov AI, Miroshnichenko AE, Brongersma ML, et al. Optically resonant dielectric nanostructures. Science. 2016;354:aag2472.
  • Koshelev K, Kivshar Y. Dielectric resonant metaphotonics. ACS Photonics. 2021;8:102–112.
  • Lepeshov S, Kivshar Y. Near-field coupling effects in Mie-resonant photonic structures and all-dielectric metasurfaces. ACS Photonics. 2018;5:2888–2894.
  • Barreda AI, Saiz JM, González F, et al. Recent advances in high refractive index dielectric nanoantennas: basics and applications. AIP Adv. 2019;9:040701.
  • Evlyukhin AB, Reinhardt C, Seidel A, et al. Optical response features of Si-nanoparticle arrays. Phys Rev B. 2010;82:045404.
  • García-Etxarri A, Gómez-Medina R, Froufe-Pérez LS, et al. Strong magnetic response of submicron silicon particles in the infrared. Opt Express. 2011;19:4815–4826.
  • Gomez-Medina R, Garcia-Camara B, Suarez-Lacalle I, et al. Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces. J Nanophotonics. 2011;5:053512.
  • Kuznetsov AI, Miroshnichenko AE, Fu YH, et al. Magnetic light. Sci Rep. 2012;2:492.
  • Yang W, Xiao S, Song Q, et al. All-dielectric metasurface for high-performance structural color. Nat Commun. 2020;11:1864.
  • Liu H, Guo C, Vampa G, et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat Phys. 2018;14:1006–1010.
  • Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces : A review. Adv Photonics. 2021;1:024002.
  • Xiao T-H, Cheng Z, Luo Z, et al. All-dielectric chiral-field-enhanced Raman optical activity. Nat Commun. 2021;12:3062.
  • Liu S, Vabishchevich PP, Vaskin A, et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat Commun. 2018;9:2507.
  • Purcell EM. Spontaneous emission probabilities at radio frequencies. Phys Rev. 1946;69:681.
  • Li X, Gu Q. High-speed on-chip light sources at the nanoscale. Adv Phys X. 2019;4:1658541.
  • Baranov DG, Savelev RS, Li SV, et al. Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photonics Rev. 2017;11:1600268.
  • Monticone F, Alù A. The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters. J Mater Chem C. 2014;2:9059–9072.
  • Hein SM, Giessen H. Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys Rev Lett. 2013;111:026803.
  • Grosjean T, Mivelle M, Baida FI, et al. Diabolo nanoantenna for enhancing and confining the magnetic optical field. Nano Lett. 2011;11:1009–1013.
  • Zambrana-Puyalto X, Bonod N. Purcell factor of spherical Mie resonators. Phys Rev B. 2015;91:195422.
  • Sugimoto H, Fujii M. Magnetic purcell enhancement by magnetic quadrupole resonance of dielectric nanosphere antenna. ACS Photonics. 2021;8:1794–1800.
  • Cheng XZ, Zhuo XL, Jiang RB, et al. Electromagnetic resonance-modulated magnetic emission in europium-doped sub-micrometer zirconia spheres. Adv Optical Mater. 2021;9:2002212.
  • Albella P, Poyli MA, Schmidt MK, et al. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J Phys Chem C. 2013;117:13573–13584.
  • Habil MK, Zapata–Rodríguez CJ, Cuevas M, et al. Multipolar-sensitive engineering of magnetic dipole spontaneous emission with a dielectric nanoresonator antenna. Sci Rep. 2021;11:12813.
  • Kolchin P, Pholchai N, Mikkelsen MH, et al. High purcell factor due to coupling of a single emitter to a dielectric slot waveguide. Nano Lett. 2015;15:464–468.
  • Liang W, Deng H, Xu H, et al. Improving magnetic dipole emission by coupled silicon nanocuboid dimer. Opt Mater Express. 2019;9:75–84.
  • Aslan E. Germanium hollow nanodisk resonator for magnetic dipole decay rate enhancement in near-infrared. Microw Opt Technol Lett. 2021;63:279–285.
  • Feng T, Xu Y, Liang Z, et al. All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt Lett. 2016;41:5011–5014.
  • Li J, Verellen N, Van Dorpe P. Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk. ACS Photonics. 2017;4:1893–1898.
  • Yang Y, Zhu B, Dai H. Strong magnetic field enhancement and magnetic Purcell effect in a dielectric disk-ring composite nanocavity. J Opt Soc Am B. 2020;37:702.
  • Palik ED. Handbook of optical constants of solids. Boston, MA: Academic Press; 1985. p. 547–569.
  • Aslan E. Engineering of dual-band magnetic dipole decay rate enhancement with concentric hollow nanodisk resonators. Opt Mater. 2021;113:110871.
  • Huang Y-W, Chen WT, Wu PC, et al. Design of plasmonic toroidal metamaterials at optical frequencies. Opt Express. 2012;20:1760–1768.
  • Yang Z-J, Zhao Q, He J. Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures. Opt Express. 2017;25:15927.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.