160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reconstructions of effective parameters for a metamaterial antenna via 3D-printed components

ORCID Icon & ORCID Icon
Pages 1613-1631 | Received 05 Aug 2021, Accepted 28 Jan 2022, Published online: 09 Feb 2022

References

  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996;76(25):4773–4776.
  • Pendry J, Holden A, Robbins D, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech. 1999;47(11):2075–2084.
  • Smith D, Padilla WJ, Vier D, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184.
  • Mukherjee S, Shi X, Udpa L, et al. Design of a split-ring resonator sensor for near-field microwave imaging. IEEE Sens J. 2018;18(17):7066–7076.
  • Samad A, Hu W, Shahzad W, et al. Design of highly sensitive complementary metamaterial-based microwave sensor for characterisation of dielectric materials. IET Microw Antennas Propag. 2020;14(15):2064–2073.
  • Chen X, Chen J, Liu C, et al. A genetic metamaterial and its application to gain improvement of a patch antenna. J Electromagn Waves Appl. 2012;26(14–15):1977–1985.
  • Carbonell J, Roglá LJ, Boria VE, et al. Design and experimental verification of backward-wave propagation in periodic waveguide structures. IEEE Trans Microw Theory Tech. 2006;54(4):1527–1533.
  • Torres V, Pacheco-Peña J, Rodríguez-Ulibarri P, et al. Terahertz epsilon-near-zero graded-index lens. Opt Exp. 2013;21(7):9156–9166.
  • Yilmaz HO, Yaman F. Metamaterial antenna designs for a 5.8 GHz Doppler radar. IEEE Trans Instrum Meas. 2020;69(4):1775–1782.
  • David R, John B. Homogenization of metamaterials by field averaging. J Opt Soc Am B. 2006;23(3):391–403.
  • Alu A. First-principles homogenization theory for periodic metamaterials. Phys Rev B. 2011;84:075153.
  • Ziolkowski RW. Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag. 2003;51(7):1516–1529.
  • Marqués R, Medina F, Rafii-El-Idrissi R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B. 2001;65:144440.
  • Papadakis GT, Yeh P, Atwater HA. Retrieval of material parameters for uniaxial metamaterials. Phys Rev B. 2015;91:155406.
  • Chen X, Wu B-I, Kong JA, et al. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys Rev E. 2005;71:046610.
  • Asadchy VS, Diaz-Rubio A, Tretyakov SA. Bianisotropic metasurfaces: physics and applications. Nanophotonics. 2018;7(6):1069–1094.
  • Smith DR, Schurig D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys Rev Lett. 2003;90(7):077405.
  • Smith DR, Gollub J, Mock JJ, et al. Calculation and measurement of bianisotropy in a split ring resonator metamaterial. J Appl Phys. 2006;100:024507.
  • Ghodgaonkar DK, Varadan VV, Varadan VK. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans Instrum Meas. 1990;39(2):387–394.
  • Zarifi D, Soleimani M, Abdolali A, et al. Robust technique based on transition matrix method to electromagnetic characterisation of anisotropic material. IET Microw Antennas Propag. 2014;8(9):632–641.
  • Belhadj-Tahar NE, Fourrier-Lamer A, Chanterac HD. Broad-band simultaneous measurement of complex permittivity and permeability using a coaxial discontinuity. IEEE Trans Microw Theory Tech. 1990;38(1):1–7.
  • Damaskos NJ, Mack RB, Maffett AL, et al. The inverse problem for biaxial materials. IEEE Trans Microw Theory Tech. 1984;32(4):400–405.
  • Chen H, Zhang J, Bai Y, et al. Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Opt Exp. 2006;14(26):12944–12949.
  • Yılmaz H, Yaman F. Meta-material antenna design for 5.8 GHz Doppler radar. In: Book of Abstracts, 34th International Physics Congress of the Turkish Physical Society; 2019. Bodrum/Turkey.
  • Yılmaz H, Yaman F. Reconstruction of medium parameters for metamaterial antennas via retrieval method. In: Book of Abstract, 35 International Physics Congress of the Turkish Physical Society; 2019. Bodrum/Turkey.
  • D'Auria M, Otter WJ, Hazell J, et al. 3-D printed metal-pipe rectangular waveguides. IEEE Trans Compon Packag Manuf Technol. 2015;5(9):1339–1349.
  • Naeini MR, van der Weide D. Cascaded 3-D-printed X-band components for subsystems. IEEE Microw Wirel Compon Lett. 2019;29(5):333–335.
  • Jones A, Lucyszyn S, Márquez-Segura E, et al. 3-D printed primary standards for calibration of microwave network analysers. Elsevier Meas. 2020;158:107682.
  • Huang G-L, Zhou S-G, Sim C-Y-D, et al. Lightweight perforated waveguide structure realized by 3-D printing for RF applications. IEEE Trans Antennas Propag. 2017;65(8):3897–3904.
  • Yi H, Qu S-W, Ng K-B, et al. 3-D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam. IEEE Trans Antennas Propag. 2016;64(2):442–449.
  • Otter WJ, Ridler NM, Yasukochi H, et al. 3D printed 1.1 THz waveguides. Electron Lett. 2017;53(7):471–473.
  • Zhang S, Whittow W, Yiannis J, et al. Additively manufactured artificial materials with metallic meta-atoms. IET Microw Antennas Propag. 2017;11(14):1955–1961.
  • Chan KY, Ramer R, Sorrentino R. Low-cost Ku-band waveguide devices using 3-D printing and liquid metal filling. IEEE Trans Microw Theory Tech. 2018;66(9):3993–4001.
  • Dionigi M, Tomassoni C, Venanzoni G, et al. Simple high-performance metal-plating procedure for stereolithographically 3-D-printed waveguide components. IEEE Microw Wirel Compon Lett. 2017;27(11):953–955.
  • Alkaraki S, Andy A, Gao Y, et al. Compact and low-cost 3-D printed antennas metalized using spray-coating technology for 5G mm-wave communication systems. IEEE Antennas Wirel Propag Lett. 2018;17(11):2051–2055.
  • Karatay A, Yaman F. Fully 3D printed bead-pull measurement of an elliptical cavity. In: Book of full text proceedings of the 35th International Physics Congress (TPS35) of the Turkish Physical Society, Vol. 1, No. 1. p. 42–49.
  • Chemicals MG. Super shield nickel conductive coating 841 technical data sheet.
  • Li L-W, Li Y-N, Yeo TS, et al. A broadband and high-gain metamaterial microstrip antenna. Appl Phys Lett. 2010;96(6):164101.
  • Pozar DM. Microwave engineering. 4th ed. John Wiley & Sons, Inc.; 2012.
  • Rothwell EJ, Frasch JL, Ellison SM, et al. Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials. Prog Electromagn Res. 2016;157:31–47.
  • Baskey HB, Akhtar MJ, Dixit AK, et al. Design, synthesis, characterization and performance evaluation of multi-band perfect metamaterial absorber. J Electromagn Waves Appl. 2015;29(18):2479–2491.
  • Baker-Jarvis J, Vanzura EJ, Kissick WA. Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans Microw Theory Tech. 1990;38(8):1096–1103.
  • Chen X, Grzegorczyk TM, Wu B-I, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E. 2004;70:649.
  • Center for Metamaterials and Integrated Plasmonics. Homepage. [cited 2021 Apr 2]. Available from: http://metamaterials.duke.edu/
  • Wang H, Chen X, Huang K. An improved approach to determine the branch index for retrieving the constitutive effective parameters of metamaterials. J Electromagn Waves Appl. 2012;25(1):85–96.
  • Taconic RF60A Data Sheet. Available from: http://www.taconic.co.kr/download/RF-60TC.pdf
  • Lubkowski G. Simulation of electromagnetic fields in double negative metamaterials [Ph.D. diss]. Darmstadt: Dept. Elect. Eng. Inf. Technol., Darmstadt Tech. Univ.; 2009.
  • Cem Hasar U, Muratoglu A, Bute M, et al. Effective constitutive parameters retrieval method for bianisotropic metamaterials using waveguide measurements. IEEE Trans Microw Theory Tech. 2017;65(5):1488–1497.
  • Lindell I, Tretyakov S, Nikoskinen K, et al. BW media-media with negative parameters, capable of supporting backward waves. Microw Opt Technol Lett. 2001;31(2):129–133.
  • Falcone F, Lopetegi T, Laso M, et al. Babinet principle applied to design of metasurfaces and metamaterials. Phys Rev Lett. 2004;93(19):197401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.