92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Narrow-band anisotropic magnetized ferrite material simulation by approximate Crank–Nicolson procedure with improved nearly absorbing condition

, , , &
Pages 1813-1837 | Received 06 Oct 2021, Accepted 15 Feb 2022, Published online: 21 Mar 2022

References

  • Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag. 1966;14(3):302–307.
  • Pursel JD, Goggans PM. A finite-difference time-domain method for solving electromagnetic problems with bandpass-limited sources. IEEE Trans Antenna Propag. 1999;47(1):9–15.
  • Pinto D, Obayya SSA. Improved complex-envelope alternating-direction-implicit finite-difference-time-domain method for photonic-bandgap cavities. J Lightw Technol. 2007;25(1):440–447.
  • Ma C, Chen Z. Dispersion analysis of the three-dimensional complex envelope ADI-FDTD method. IEEE Trans Antennas Propag. 2005;53(3):971–976.
  • Jung K, Teixeira FL, Lee R. Complex envelope PML-ADI-FDTD method for Lossy anisotropic dielectrics. IEEE Antenna Wireless Propag Lett. 2007;6:643–646.
  • Jung K, Teixeira FL, Garcia SG, et al. On numerical artifacts of the complex envelope ADI-FDTD method. IEEE Trans Antennas Propag. 2009;57(2):491–498.
  • Ma C, Chen Z. Stability and numerical dispersion analysis of CE-FDTD method. IEEE Trans Antennas Propag. 2005;53(1):332–338.
  • Jung K-Y, Teixeira FL. CE-ADI-FDTD analysis of photonic crystals with a degenerate band edge (DBE)). 2007 IEEE antennas and propagation society international symposium; Honolulu, HI, USA, 2007, pp. 4449–4452.
  • Singh G, Tan EL, Chen ZN. Efficient complex envelope ADI-FDTD method for the analysis of anisotropic photonic crystals. IEEE Photon Technol Lett. 2011;23(12):801–803.
  • Ramadan O. Complex envelope four-stage ADI-FDTD algorithm for narrowband electromagnetic applications. IEEE Antenna Wireless Propag. Lett. 2009;8:1084–1086.
  • Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. Boston (MA): Artech House; 2005.
  • Namiki T. 3-D ADI-FDTD method unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations. IEEE Trans Microwave Theory Tech. 2000;48(10):1743–1748.
  • Shibayama J, Muraki M, Yamauchi J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electr Lett. 2005;41(19):1046–1047.
  • Kong YD, Chu QX. High-order split-step unconditionally-stable FDTD methods and numerical analysis. IEEE Trans Antennas Propag. 2011;59(9):3280–3289.
  • Kusaf M, Oztoprak AY. An unconditionally stable split-step FDTD method for low anisotropy. IEEE Microwave Wireless Compos Lett. 2008;18(4):224–226.
  • Sun G, Trueman CW. Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method. IEEE Trans Microwave Theory Tech. 2006;54(5):2275–2284.
  • Moon H, Teixeira FL, Kim J, et al. Trade-offs for unconditional stability in the finite-element time-domain method. IEEE Microwave Wireless Compon Lett. 2014;24(6):361–363.
  • Sun G, Trueman CW. Approximate Crank-Nicolson scheme for the 2-D finite-difference time-domain method for TEz waves. IEEE Trans Antennas Propag. 2004;52(11):2963–2972.
  • Sun G, Trueman CW. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations. Electr Lett. 2003;39(7):595–597.
  • Shi XY, Jiang XY. Implementation of the Crank-Nicolson Douglas-Gunn finite difference time domain with complex frequency-shifted perfectly matched layer for modeling unbounded isotropic dispersive media in two dimensions. Microwave Opt Technol Lett. 2020;62(3):1103–1111.
  • Sun G, Trueman CW. Unconditionally-stable FDTD method based on Crank-Nicolson scheme for solving three-dimensional Maxwell equations. Electron Lett. 2004;40(10):589–590.
  • Sun G, Trueman CW. Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method. IEEE Trans Microwave Theory Tech. 2006;54(5):2275–2284.
  • Tan EL. Efficient algorithms for Crank-Nicolson-based finite-difference time-domain methods. IEEE Trans Microwave Theory Tech. 2008;56(2):408–413.
  • Jiang HL, Wu LT, Zhang XG, et al. Computationally efficient CN-PML for EM simulations. IEEE Trans Microwave Theory Tech. 2019;67(12):4646–4655.
  • Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys. 1994;114(2):185–200.
  • Berenger JP. Perfectly matched layer (PML) for computational electromagnetics. New York: Morgan & Claypool; 2007.
  • Chew WC, Weedon WH. A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates. Microwave Opt Technol Lett. 1994;7(13):599–604.
  • Cummer SA. A simple, nearly perfectly matched layer for general electromagentic media. IEEE Microwave Wireless Compon Lett. 2003;13:128–130.
  • Li J, Dai J. Z-Transform implementation of the CFS-PML for Arbitrary media. IEEE Microwave Wireless Compon Lett. Aug. 2006;16(8):437–439.
  • Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave Guided Wave Lett. 1996;6:447–449.
  • Giannakis I, Giannopoulos A. Time-synchronized convolutional perfectly matched layer for improved absorbing performance in FDTD. IEEE Antennas Wireless Propag Lett. 2015;14:690–693.
  • Correia D, Jin JM. Performance of regular PML, CFS-PML, and second-order PML for waveguide problems. Microwave Opt Technol Lett. 2006;48:2121–2126.
  • Wagner CL, Young JL. FDTD numerical tests of the Convolutional PML at extremely low frequencies. IEEE Antennas Wireless Propag Lett. 2009;8:1398–1401.
  • De Moerloose J, Stuchly MA. Reflection analysis of PML ABCs for low-frequency applications. IEEE Microwave Guided Wave Lett. 1996;6(4):177–179.
  • Feng N, Li J. Efficient DSP-higher-order PML formulations for the metal plate buried in dispersive soil half-space problem. IEEE Trans Electromagn Compat. 2012;54(5):1178–1181.
  • Li J, Yang Q, Niu P, et al. An efficient implementation of the higher-order PML based on the Z-transform method. 2011 IEEE international conference on microwave technology & computational electromagnetics, 2011, pp. 414–417.
  • Haolin J, Yongjun X, Peiyu W, et al. Unsplit-field higher-order nearly PML for arbitrary media in EM simulation. J Syst Eng Electr. 2021;32(1):1–6.
  • Feng N-X, Li J-X, Zhao X-M. Efficient FDTD implementations of the higher-order PML using DSP techniques for arbitrary media. IEEE Trans Antennas Propag. 2013;61(5):2623–2629.
  • Li J, Mao L, Miao J, et al. Unsplit-field formulations for the higher-order PML. 2009 international conference on microwave technology and computational electromagnetics (ICMTCE 2009), 2009, pp. 348–351.
  • Giannopoulos A. Higher-order convolution PML (CPML) for FDTD electromagnetic modeling. IEEE Trans Antennas Propag. 2020;68(8):6226–6231.
  • Correia D, Jin JM. On the development of a higher-order PML. IEEE Trans Antennas Propag. 2005;53(12):4157–4163.
  • Wei XK, Shao W, Shi SB, et al. An optimized higher-order PML in domain decomposition WLP-FDTD method for time reversal analysis. IEEE Trans Antennas Propag. 2016;64(10):4374–4383.
  • Wu PY, Xie YJ, Jiang HL, et al. Unconditionally stable higher order perfectly matched layer applied to terminate anisotropic magnetized plasma. Int J RF Microwave Comput Aided Eng. 2020;33(1):e22011.
  • Wu P, Xie Y, Jiang H, et al. Complex envelope approximate CN-PML algorithm with improved absorption. IEEE Antennas Wireless Propag Lett. 2020;19(9):1521–1525.
  • Wei X, Shao W, Shi S, et al. An optimized higher order PML in domain decomposition WLP-FDTD method for time reversal analysis. IEEE Trans Antennas Propag. 2016;64(10):4374–4383.
  • Wu PY, Jiang HL, Xie YJ, et al. Three-dimensional higher order PML based on alternating direction implicit algorithm. IEEE Antennas Wireless Propag Lett. 2019;18(12):2952–2956.
  • Wu P, Xie Y, Jiang H, et al. Performance enhanced Crank-Nicolson boundary conditions for EM problems. IEEE Trans Antennas Propag. 2021;69(3):1513–1527.
  • Yanfang C, Liwei W. Higher order implicit CNDG-PML algorithm for left-handed materials. J Syst Eng Electr. 2021;32(1):31–37.
  • Shi XY, Jiang XY. Implementation of the Crank-Nicolson Douglas-Gunn finite difference time domain with complex frequency-shifted perfectly matched layer for modeling unbounded isotropic dispersive media in two dimensions. Microwave Opt Technol Lett. 2020;62(3):1103–1111.
  • Nan CW, Bichurin MI, Dong SX, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys. 2008;103(3):031101.
  • Luo JH, Shen P, Yao W, et al. Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett. 2016;11:141.
  • Wu PY, Xie YJ, Jiang HL, et al. Bilinear Z-transform perfectly matched layer for rotational symmetric microwave structures with magnetised ferrite. IET Microwave Antennas Propag. 2019;14(4):247–252.
  • Hosseini K, Atlasbaf Z. Efficient three-step LOD-FDTD method in Lossy saturated ferrites with arbitrary magnetization. IEEE Trans Antennas Propag. 2018;66(3):1374–1383.
  • Wu PY, Xie YJ, Jiang HL, et al. Higher-order approximate CN-PML theory for magnetized ferrite simulations. Adv Theory Simul 2020;3(4):1900221.
  • Dou WB, Yung EKN. FDTD analysis for multiple arbitrarily shaped posts in a waveguide. Microwave Opt Technol Lett. 2000;27:216–220.
  • Wu P, Xie Y, Jiang H, et al. Implicit approximate Crank–Nicolson theory for anisotropic ferrite structure simulation with enhanced absorption. Adv Theory Simul. 2021;4:2000309.
  • Wu P, Wang X, Xie Y, et al. Bandpass simulation of anisotropic magnetized ferrite material with alternating direction implicit scheme in open region. IEEE Trans Magn. Jan. 2022;58(1):1–8.
  • Becache E, Petropoulos PG, Gedney SD. On the long-time behavior of unsplit perfectly matched layers. IEEE Trans Antennas Propag. 2004;52(5):1335–1342.
  • Becache E, Fauqueux S, Joly P. Stability of perfectly matched layers, group velocities and anisotropic waves. J Comput Phys. 2003;188(2):399–433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.