480
Views
1
CrossRef citations to date
0
Altmetric
Review

Review of microwave frequency measurement circuits

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2055-2087 | Received 16 Sep 2020, Accepted 07 Mar 2022, Published online: 17 Mar 2022

References

  • Llamas-Garro I, De Melo MT, Jung-Mu K. Frequency measurement technology. Norwood (MA): Artech House; 2017.
  • East PW. Fifty years of instantaneous frequency measurement. IET Radar Sonar Navig. 2012;6(2):112–122.
  • Sullivan W. Instantaneous frequency measurement receivers for maritime patrol. J Electronic Def. 2002;25(10):55–57.
  • Naval Air Systems Command. Electronic warfare and radar systems engineering handbook. Naval Air Warfare Center Weapons Division, Rev. 2, 1999. Chapter 5–3, Receiver Types and Characteristics; p. 5-3.1–5-3.5.
  • Tsui JB. Microwave receivers with electronic warfare applications. New York (NY): Scitech Publishing; 2005.
  • De Melo MT, Lancaster MJ, Hong JS. Coplanar strips interdigital delay line for instantaneous frequency measurement systems. IEE Colloquium on Advanced Signal Processing for Microwave Applications; 1996 Nov 28–29; London, UK.
  • Robinson SJ. inventor; Broadband microwave discriminator. British patent GB953430, 1958.
  • Robinson SJ. Comment on broadband microwave discriminator. IEEE Trans Microw Theory Tech. 1964;12(2):255–256.
  • Goddard NE. Instantaneous frequency measuring receivers. IEEE Trans Microw Theory Tech. 1972;20(4):292–293.
  • Heaton D, King D. Digital IFM receiver planned for the 80’s head of schedule. Def Electron. 1979;11:71–75.
  • Anaren Microwave Inc. An IFM Receiver on a Single PCB. Microw J [Internet]. 1998 January [cited 1998 January]; 1:1–5. Available from: https://www.microwavejournal.com/articles/2221-an-ifm-receiver-on-a-single-pcb.
  • Espinosa-Espinosa M, De Oliveira BGM, Llamas-Garro I, et al. 2-Bit, 1–4 GHz reconfigurable frequency measurement device. IEEE Microw Wireless Compon Lett. 2014;24(8):569–571.
  • Espinosa-Espinosa M, Llamas-Garro I, De Oliveira BGM, et al. 4-Bit reconfigurable discriminator for frequency identification receivers, a building block approach. Radio Sci. 2016;51(6):826–835.
  • De Oliveira BGM, Silva FRL E, De Melo MT, et al. A new coplanar interferometer for a 5–6 GHz instantaneous frequency measurement system. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC); 2009 Nov 3–6; Belem, Brazil.
  • Silva CPN, Pinheiro GJ, De Oliveira MRT, et al. Reconfigurable frequency discriminator based on fractal delay line. IEEE Trans Microw Wireless Compon Lett. 2019;29(3):186–188.
  • Silva CPN, De Oliveira EMF, De Oliveira MRT, et al. New compact interferometer based on fractal concept. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC); 2015 Nov 3–6; Porto de Galinhas, Brazil.
  • Silva CPN, Machado GG, De Oliveira EMF, et al. Compact fractal interferometer for a 4-bit IFM system. Microw Optical Technol Lett. 2017;59(5):1153–1157.
  • Jeon M-S, Jeon Y-O, Seo W-G, et al. Design and fabrication of a C-band delay line instantaneous frequency measurement receiver with offset voltage compensation. J Korean Inst Electromagnetic Eng Sci. 2016;27(1):42–49.
  • Biehl M, Vogt A, Herwig R, et al. A 4bit instantaneous frequency meter at 10 GHz with coplanar YBCO delay lines. IEEE Trans Appl Superconductivity. 1995;5(2):2279–2282.
  • De Souza MFA, Silvia FRL, De Melo MT. Discriminator for instantaneous frequency measurement subsystem based on open loop resonators. IEEE Trans Microw Theory Tech. 2009;57(9):2224–2231.
  • De Oliveira BGM, De Melo MT, Llamas-Garro I, et al. Integrated instantaneous frequency measurement subsystem based on multi-band-stop filters. Asia-Pacific Microwave Conference Proceedings (APMC); 2014 Nov 4–7; Sendai, Japan.
  • Badran H, Deeb M. A low-cost instantaneous frequency measurement system. Prog Electromagnetics Res M. 2017;59:171–180.
  • Rahimpour H, Masoumi N. High-resolution frequency discriminator for instantaneous frequency measurement subsystem. IEEE Trans Instrum Measurement. 2018;67(10):2373–2381.
  • Rahimpour H, Masoumi N, Keshani S, et al. A high frequency resolution successive-band shifted filters architecture for a 15-bit IFM receiver. IEEE Trans Microw Theory Tech. 2019;67(5):2028–2035.
  • Rahimpour H, Masoumi N. Design and implementation of a high-sensitivity and compact-size IFM receiver. IEEE Trans Instrum Measurement. 2018;68(7):2602–2609.
  • Badran H, Deeb M. A 2 to 4 GHz instantaneous frequency measurement system using multiple band-pass filters. Prog Electromagnetics Res M. 2017;62:189–198.
  • Choondaragh SE, Masoumi N. Microstrip frequency discriminators based on quarter-wave band-stop filters. 7’th International Symposium on Telecommunications (IST’2014); 2014 Sept 9–11; Tehran, Iran.
  • Rahimpour H, Masoumi N. A 6-bit instantaneous frequency discriminator based on band-stop resonators. Iranian Conference on Electrical Engineering (ICEE); 2018 May 8–10; Mashhad, Iran.
  • De Souza MFA, Le Silva FR, de Melo MT. A novel LSB discriminator for a 5 bit IFM subsystem based on microstrip band-stop filter. 38th European Microwave Conference; 2008 Oct 27–31; Amsterdam, Netherlands.
  • De Oliveira EMF, Coutinho MS, Pedrosa TL, et al. A novel method for frequency discriminators construction based on balanced gray code. Proceedings of URSI Asia-Pacific Radio Science Conference (URSI AP-RASC); 2016 Aug 21–25; Seoul, South Korea. IEEE;2016. p.1482–1484.
  • Sim S-M, Lee Y, Llamas-Garro I, et al. Frequency measurement device with reconfigurable bandwidth and resolution. IEEE Microw Wireless Compon Lett. 2020;30(9):1–3.
  • https://www.teledynedefenseelectronics.com/defenseandspace/Receivers/Pages/Receivers%20-%20IFM%20-%20Digital.aspx, accessed on the 6/7/2021.
  • Su Y, Jiang D. Digital instantaneous frequency measurement of a real sinusoid based on three sub-nyquist sampling channels. Math Probl Eng. 2020;2020:1–11. doi:10.1155/2020/5089761.
  • Wei L, Zhu NH, Wang LX. Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator. IEEE Photonics J. 2012;4(2):426–436.
  • Drummond MV, Monteiro P, Nogueira RN. Photonic RF instantaneous frequency measurement system by means of a polarization-domain interferometer. Opt Express. 2009;17(7):5433–5438.
  • Sitong W, Guiling W, Yiwei S, et al. Photonic compressive receiver for multiple microwave frequency measurement. Opt Express. 2019;27(18):25364–25374.
  • Songnian F, Junqiang Z, Perry PS, et al. Instantaneous microwave frequency measurement using programmable differential group delay (DGD) modules. IEEE Photon J. 2010;2(6):967–973.
  • Song S, Yi X, Gan L, et al. Photonic-assisted scanning receivers for microwave frequency measurement. Appl. Sci. 2019;9(2):328.
  • Pan S, Yao J. Instantaneous microwave frequency measurement using a photonic microwave filter pair. IEEE Photon Tech Lett. 2010;22(19):1437–1439.
  • Xihua Z, Jianping Y. Microwave and millimeter-wave measurements using photonics. SPIE- Int Soc Opt Photonic. 2015: 1–3. https://spie.org/news/5976-microwave-and-millimeter-wave-measurements-using-photonics (Acessed: 2022-03-14).
  • Guo Y, Ma J. Photonic instantaneous microwave frequency measurement with adjustable measurement range based on an electro-optical polarization modulator. Appl Opt. 2020;59(7):1808–1816.
  • Emani H, Sarkhosh N, Bui LA, et al. Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform. Opt Express. 2008;16(18):13707–13712.
  • Emani H, Sarkhosh N, Ashourian M. Photonic simultaneous frequency identification of radio-frequency signals with multiple tones. Appl Opt. 2013;52(22):5508–5515.
  • Wenting J, Ke Y, Jungiang S. Multiple microwave frequency measurement with improved resolution based on stimulated brillouin scattering and nonlinear fitting. IEEE Photon J. 2019;11(2):1–13.
  • Zou X, Lu B, Pan W, et al. Photonics for microwave measurements. Laser Photonics Rev. 2016;10(5):711–734.
  • Llamas-Garro I, Brito-Brito Z. Reconfigurable microwave filters. In: Minin I, editor. Microwave and millimeter wave technologies from photonic bandgap devices to antenna and applications. London: IntechOpen; 2010. p. 159–184.
  • Brito-Brito Z, Llamas-Garro I, Pradell-Cara L, et al. Microstrip switchable bandstop filter using PIN diodes with precise frequency and bandwidth control. 38th European Conference on Wireless Technology, 2008 Oct 27–31, Amsterdam Netherlands. p. 286–289.
  • Musoll-Anguiano C, Llamas-Garro I, Brito-Brito Z, et al. Fully adaptable bandstop filter using varactor diodes. Microw Optical Technol Lett. 2010;52(3):554–558.
  • Muñoz-Ferreras J-M, Gomez-Garcia R. A digital interpretation of frequency-periodic signal-interference microwave passive filters. IEEE Trans Microw Theory Tech. 2014;62(11):2633–2640.
  • Sim S, Lee Y, Kim J, et al. Frequency discriminator design phase formula with experimental verification for frequency measurement systems with uniform sub-band resolution. Int J RF Microw Comput-Aided Eng. September 2021;31(9):1–6.
  • Tyrell WA. Hybrid circuits for microwaves. IRE Proc. 1947;35:1294–1306.
  • Earp CW. Frequency indicating cathode ray oscilloscope. U.S. Patent 2434 914. January 27, 1948.
  • Ashley JR, Searles CB, Palka FM. The measurement of oscillator noise at microwave frequencies. IEEE Trans Microw Theory Tech. Sept 1968;16:753–760. (Special Issue on Noise).
  • Wiley RG, Williams EM. Spectrum display is instantaneous. Microw J. August 1970: 44–47.
  • Nigrin J, Mansour NA, Voss WAG. Single hybrid tee frequency discriminator. IEEE Trans Microw Theory Tech (Lett). Sept 1975;23:776–778.
  • Peebles PZ Jr., Green AH Jr. A microwave discriminator at 35 GHz. Proceed IEEE. Feb 1980;68:286–288.
  • Williams EM. Private Communication with E. M. Williams, 1960.
  • May BB. A wide band frequency discriminator using open and shorted stubs, Technical Report 791-2, Stanford Electronic Lab, November 1960 (SEL Project 791 K).
  • Boose GM. E-l/O instantaneous frequency indicating receiver, Final Report, Task Order 7, Subtask 1, Contract 582RR2, October 31, 1962.
  • De Souza SRO, De Souza MFA, Pontes LP, et al. A novel fully integrated 4-Bit IFM subsystem using band-stop filters. J Microw Optoelectron Electromag Appl. 2020;19(3):396–406.
  • Keshani S, Masoumi N, Rahimpour H, et al. Digital processing for accurate frequency extraction in IFM receivers. IEEE Trans Instrum Meas. 2020: 1–1. DOI:10.1109/tim.2020.2969063.
  • Keshani S, Masoumi N, Safavi-Naeini S. Reliable, intelligent, and design-independent digital frequency extraction methodology for high bit-count DIFM receivers. IEEE Trans Instrum Meas. 2021;70:1–12, Art no. 6502012. DOI:10.1109/TIM.2020.3041080.
  • Pinheiro GJ, De Oliveira MRT, Silva HVH, et al. Four-bit instantaneous frequency measurement systems based on frequency selective surfaces. Microw Optical Tech Lett. 2018;61(1):68–72.
  • Emani H, Sarkhosh N, Ashourian M. Photonic simultaneous frequency identification of radio-frequency signals with multiple tones. Appl Opt. 2013;52(22):5508–5515.
  • Yang C, Yu W, Liu J. Reconfigurable instantaneous frequency measurement system based on a polarization multiplexing modulator. IEEE Photonics J. 2019;11(1):1–11. DOI:10.1109/jphot.2019.2893127.
  • Zhou Y, Zhang F, Shi J, et al. Deep neural network-assisted high-accuracy microwave instantaneous frequency measurement with a photonic scanning receiver. Opt Lett. 2020;45:3038–3041.
  • Lam D, Buckley B, Lonappan C, et al. Ultra-wideband instantaneous frequency estimation. IEEE Instrum Meas Mag. 2015;18(2):26–30. DOI:10.1109/mim.2015.7066680.
  • Klipper L. Sensitivity of crystal video receivers with RF preamplification. Microwave J. 1965;8:85–92.
  • Heinzman CP, Tang DD. Broadband crystal video detector. Microwave J. 1965;8:93.
  • Ayer WE. Characteristics of crystal video receivers employing RF preamplifier, Technical Report No. 153-3, Stanford Electronics Laboratories, Stanford University, September 20,1956.
  • Harper T. Hybridization of competitive receivers. Tech-notes, vol. 7. Palo Alto (CA): Watkins- Johnson; 1980.
  • Tsui J, James BY. An introduction to EW microwave receivers. J Electron Defense. 1989;12:39.
  • Fields TW, Sharpin DL, Tsui JB. Digital channelized IFM receiver. Proceedings of IEEE MTT-S International Microwave Symposium Digest, vol. 3. New York: IEEE; 1994:1667–1670.
  • James BY, Tsui J. Digital channelized IFM receiver, Patent Number US5499391. Mar 12, 1996.
  • Lopez-Risueno G, Grajal J, Sanz-Osorio A. Digital channelized receiver based on time-frequency analysis for signal interception. IEEE Trans Aerosp Electron Syst. 2005;41(3):879–898.
  • Zahirniak D, Sharpin DL, Fields TW. A hardware-efficient multirate digital channelized receiver architecture. IEEE Trans Aerosp Electron Syst. 1998;34(1):137–152.
  • Wilby WA, Gatenby PV. Theoretical study of the interferometric Bragg-cell spectrum analyser. IEE Proceed J-Optoelectron. 1986;133(1):47–59.
  • Goutzoulis AP, Abramovitz IJ. Digital electronics meets its match. IEEE Spectrum. 1988;25(8):21–25.
  • Chang IC. Acoustooptic devices and applications. IEEE Trans Sonics Ultrasonics. 1976;23(1):2–21.
  • Lugt AV. Interferometric spectrum analyzer. Applied Optics. 1981;20(16):2770–2779.
  • Goodman JW. Introduction to fourier optics. New York: McGraw-Hill; 1968.
  • Daniels WD, Churchman M, Kyle R, et al. Compressive receiver technology. Microw J. 1986;29(4):175–176. 178.
  • Bowler BL. Tradeoffs in digital IFM receiver design. Presented at the Joint DADC/Dmpire AOC Technical Seminar, Griffiss Air Force Base, Rome, NY, Nov. 4, 1982.
  • Harper T. New trends in EW receivers. Countermeasures 1976; December/January:34.
  • Hennessy P, Quick JD. The channelized receiver comes of age. Microw Syst News. 1979;9(7):36.
  • Anderson GW, Webb DC, Spezio AE, et al. Advanced channelization technology for RF microwave and millimeterwave applications. Proceed IEEE. 1991;79(3):355–388.
  • Tsui, J. B., Digital techniques for wideband receivers. 2nd ed. Stevenage: Scitech Publishing Inc, 2004.
  • Tsui JBY. IFM receiver with capability of detecting simultaneous signals. Microw Opt Technol Lett. 1989;2(5):162–165. DOI:10.1002/mop.4650020506.
  • Gruchalalla-Wesierski H. The estimation of simultaneous signal frequencies in the IFM receiver using parametric methods. Warsaw: Military University of Technology, 2008.
  • Kondakov D, Kosmynin A, Lavrov A. A method of simultaneous signals spectrum analysis for instantaneous frequency measurement receiver. In: Galinina Olga, Andreev Sergey, Balandin Sergey, etal, editors. Internet of things, smart spaces, and next generation networks and systems. Cham: Springer; 2018. p. 200–209. doi:10.1007/978-3-030-01168-0_19.
  • Adamy D. W101: A first course in electronic warfare. London: Artech House; 2001; ISBN 1-58053-169-5.
  • Tsui JBY, Shaw R. Simultaneous signal detection for instantaneous frequency measurement (IFM) receivers by detecting the intermodulations product from non-linear devices. US. Patent 4,426,648.
  • James T, Chi-Hao C. Digital techniques for wideband receivers. 3rd ed. Stevenage: Scitech Publishing; 2015.
  • Hennessy P, Quick JD. The channelized receiver comes of age. Microw Syst News. 1979;9(7):36.
  • Anderson GW, Webb DC, Spezio AE, et al. Advanced channelization technology for RF microwave and millimeterwave applications. Proceed IEEE. 1991;79(3):355–388.
  • McCormick WS, Lansford JL. Time domain algorithm for the estimation of two sinusoidal frequencies. IEE Proceed—Vision Image Signal Process. 1994;141(1):33–38.
  • Zelnio AM, Moore LJ, Roush CR, et al. Cramér-Rao lower bound on time of arrival estimates for an envelope-detected pulse. 2013 IEEE Radar Conference (RadarCon13). DOI:10.1109/radar.2013.6586164.
  • Maram R, Kaushal S, Azaña J, et al. Recent trends and advances of silicon-based integrated microwave photonics. Photonics. 2019;6(1):13. DOI:10.3390/photonics6010013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.