72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The center-end-fed dipole-like antenna excited by the cross-like reentrant in-phase power divider

, ORCID Icon, &
Pages 2115-2134 | Received 26 Oct 2021, Accepted 05 Apr 2022, Published online: 20 Apr 2022

References

  • Balanis CA. Antenna theory: analysis and design. Hoboken (NJ): Wiley; 2016.
  • Chen ZN. Handbook of antenna technologies. Singapore: Springer; 2016.
  • Balanis CA. Modern antenna handbook. Hoboken (NJ): Wiley; 2008.
  • Gorbachev AP, Tarasenko NV, Atuchin VV. Planar dual-frequency quasi-Yagi antenna. Electromagnetics. 2016;36(5):328–339.
  • Atuchin VV, Gorbachev AP, Tarasenko NV. Compact printed dual-frequency quasi-Yagi antenna with a monopole driver. Microw Opt Technol Lett. 2017;59:1845–1850.
  • Fenn AJ. Adaptive antennas and phased arrays for radar and communications. Boston, London: Massachusetts Institute of Technology, Lincoln Laboratory: Artech House; 2008.
  • Li RL, Pan L, Cui Y. A novel broadband circularly polarized antenna based on off-center-fed dipoles. IEEE Trans Antennas Propag. 2015;63:5296–5304.
  • Koo H, Nam S. Mechanism and elimination of scan blindness in a T-printed dipole array. IEEE Trans Antennas Propag. 2020;68:242–253.
  • Makarov SN, Ludwig R. Analytical model of the split-coaxial balun and its application to a linearly-polarized dipole or a CP turnstile. IEEE Trans Antennas Propag. 2007;55:1909–1918.
  • Uchida H. Split coaxial balance converter for VHF and UHF. J Inst Elect Commun Eng Jpn. 1950;33:406–408.
  • Kogo H, Morita K. Antenna impedance transformation by means of split-coaxial cylinder type balun. J Inst Elect Commun Eng Jpn. 1955;38:359–365.
  • Kogo H. Analysis of split coaxial line type balun. IEEE Trans Microw Theory Tech. 1960;8:245–246.
  • Borejchuk AI, Gorbachev AP, Kirillova NA, et al. Dipole antenna. Russian Federation patent 2571156. 2014 Mar 20.
  • Gorbachev AP, Shwedova AV, Zubova AD. Radiation resistance of center-end-fed dipole radiator with prescribed phase difference between excitation voltages. In: Proceedings of the 12th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE); 2014 Oct 2-4; Novosibirsk, Russia. Novosibirsk (Russia): NSTU Press; p. 308–312.
  • Buhtiyarov DA, Gorbachev AP. Input impedance of dipole and dipole-like antennas with prescribed phase difference between excitation currents. Proceedings of the 12th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE); 2014 Oct 2–4; Novosibirsk, Russia. Novosibirsk (Russia): NSTU Press; p. 304–307.
  • Korn GA, Korn TM. Mathematical handbook for scientists and engineers. New York (NY): McGraw-Hill; 1961.
  • CST studio suite. [cited 2020 Mar 10]. Available from: https://www.cst.com/academia/student-edition.
  • Buhtiyarov DA, Gorbachev AP, Khrustalev VA. The novel center-end-fed dipole-like antenna. Proceddings of the 14th International Scientific-technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE); 2018 Oct 2–6; Novosibirsk, Russia. Novosibirsk (Russia): NSTU Press; p. 400–403.
  • Alekseytsev SA, Bukhtiyarov DA, Gorbachev AP, et al. The novel two-port hybrid ring dipole-like antenna with simultaneous sum and difference radiation patterns. Electromagnetics. 2020;40(8):554–562.
  • Wilkinson EJ. An N-Way hybrid power divider. IEEE Trans Microw Theory Tech. 1960;8:116–118.
  • Mongia RK, Bahl IJ, Bhartia P, et al. RF and microwave coupled-line circuits. 2nd ed. Norwood (MA): Artech House; 2007.
  • Brenner HE. Perturbations of the critical parameters of quarter-wave directional couplers. IEEE Trans Microw Theory Tech. 1967;15:384–385.
  • Cohn SB. The re-entrant cross section and wide-band 3-dB hybrid couplers. IEEE Trans Microw Theory Tech. 1963;11:254–258.
  • Gorbachev AP, Tarasenko NV. The novel reentrant power splitters and band-stop elliptic filters. Proceedings of the 13th International Conference on Actual Problems of Electronic Instrument Engineering (APEIE); 2016 Oct 3–6; Novosibirsk, Russia. Novosibirsk (Russia): NSTU Press; p. 173–176.
  • Gorbachev AP, Khrustalev VA, Tarasenko NV. The novel reentrant devices and related reduced networks. Proceedings of the 14th International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE); 2018 Oct 2–6; Novosibirsk, Russia. Novosibirsk (Russia): NSTU Press; p. 37–40.
  • Alekseytsev SA, Bondareva AV, Gorbachev AP, et al. Towards the study of high-frequency phased antenna array components. Proceedings of the 21st International Conference on Micro/Nanotechnologies and Electron Devices (EDM-2020); 2020 Jun 29 to Jul 03; Novosibirsk, Russia. Novosibirsk (Russia): NSTU Press; p. 87–93.
  • Matthaei GL, Young L, Jones EMT. Microwave filters, impedance matching networks and coupling structures. New York (NY): McGraw-Hill; 1964.
  • Bukhtiyarov DA, Vilmitskij DS, Gorbachev AP, et al. Waveguide dipole antenna. Russian Federation patent 2676207; 2017 Nov 30.
  • Bukhtiyarov DA, Gorbachev AP, Atuchin VV. The linearly polarized waveguide-fed dipole-like antenna. J Electromag Waves Appl. 2015;29(13):1720–1727.
  • Alekseytsev SA, Gorbachev AP, Parshin YN. An investigation of novel active phased array components. IOP Conf Series: Mater Sci Eng. 2021;1019:012099.
  • Gorbachev AP. The reentrant wide-band directional filter. IEEE Trans Microw Theory Tech. 2002;50:2028–2031.
  • Atuchin VV, Gorbachev AP, Khrustalev VA, et al. The dual-band reentrant power splitter. AEU Int J Electron Commun. 2018;84:21–26.
  • Atuchin VV, Gorbachev AP, Khrustalev VA, et al. The reentrant four-layer quasi-elliptic bandstop filter. Electronics. 2019;8:81.
  • Atuchin VV, Buhtiyarov DA, Gorbachev AP. Compact printed microwave filters for wireless communication applications. Pacific Sci Rev A: Nat Sci Eng. 2016;18:157–161.
  • Frickey DA. Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans Microw Theory Tech. 1994;42:205–211.
  • Gorbachev AP, Tarasenko NV. The novel reentrant power splitters and bandstop elliptic filters. Proceedings of the 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE); 2016 Oct 3-6; Novosibirsk, Russia. Novosibirsk (Russia): NSTU Press; p. 173–176.
  • Lavendol L, Taub JJ. Re-entrant directional coupler using strip transmission line. IEEE Trans Microw Theory Tech. 1965;13:700–701.
  • Cristal EG. Re-entrant directional couplers having direct coupled center conductors. IEEE Trans Microw Theory Tech. 1966;14:207–208.
  • Cristal EG. Nonsymmetrical coupled lines of reentrant cross section. IEEE Trans Microw Theory Tech. 1967;15:529–530.
  • Cristal EG. Correction to “nonsymmetrical coupled lines of reentrant cross section”. IEEE Trans Microw Theory Tech. 1968;16(1):57.
  • Monaco VA, Tiberio P. Computer-aided analysis of microwave circuits. IEEE Trans Microw Theory Tech. 1974;22:249–263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.