504
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi beam scanning programmable metasurface using miniaturized unit cells for 5G applications

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2164-2177 | Received 03 Jan 2022, Accepted 15 Apr 2022, Published online: 20 May 2022

References

  • Katare KK, Chandravanshi S, Biswas A, et al. Realization of split beam antenna using transmission-type coding metasurface and planar lens. IEEE Trans Antennas Propagation. 2019;67(4):2074–2084.
  • Ebrahimzadeh R, Zakeri B, Yousefzadeh M, et al., editors Optically controlled reconfigurable substrate integrated waveguide slot array antenna for 5G Applications. 2020 10th International Symposium onTelecommunications (IST); 2020: IEEE.
  • Zhao Z, Zhang W. Multi-beam antenna based on annular slot and uneven metasurface. Int J RF and Microwave Computer-Aided Eng. 2021;31(11):e22814.
  • Liu Y, Yang H, Jin Z, et al. A multibeam cylindrically conformal slot array antenna based on a modified Rotman lens. IEEE Trans Antennas Propagation. 2018;66(7):3441–3452.
  • Chu HN, Hoang TH, Ji K-J, et al. A phase distribution network using 2× 4 Butler Matrix for linear/planar beam-scanning arrays. IEEE Access. 2021;9:133438–133448.
  • Ren H, Zhang H, Jin Y, et al. A novel 2-D $ $ Nolen Matrix for 2-D beamforming applications. IEEE Trans Microwave Theory Techniques. 2019;67(11):4622–4631.
  • Li T, Chen ZN. Compact wideband wide-angle polarization-free metasurface lens antenna array for multibeam base stations. IEEE Trans Antennas Propagation. 2019;68(3):1378–1388.
  • Lian J-W, Ban Y-L, Yang Q-L, et al. Planar millimeter-wave 2-D beam-scanning multibeam array antenna fed by compact SIW beam-forming network. IEEE Trans Antennas Propagation. 2018;66(3):1299–1310.
  • Rahimian A. Millimetre-Wave Rotman lens-based array beamforming networks for next-generation wireless subsystems. Queen Mary University of London; 2018. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rahimian+A.+Millimetre-Wave+Rotman+Lens-Based+Array+Beamforming+Networks+for+Next-Generation+Wireless+Subsystems%3A+Queen+Mary+University+of+London%3B+2018.&btnG=
  • Cui TJ, Liu S, Zhang L. Information metamaterials and metasurfaces. J Mater Chem C. 2017;5(15):3644–3668.
  • Bukhari SS, Vardaxoglou JY, Whittow W. A metasurfaces review: definitions and applications. Appl Sci. 2019;9(13):2727.
  • Yang X, Ding Z, Zhang Z. Broadband linear polarization conversion across complete Ku band based on ultrathin metasurface. AEU-Int J Electron Commun. 2021;138:153884.
  • Saxena G, Awasthi Y, Jain P. Design of metasurface absorber for low RCS and high isolation MIMO antenna for radio location & navigation. AEU-Int J Electron Commun. 2021;133:153680.
  • Zhou E, Cheng Y, Chen F, et al. Wideband and high-gain patch antenna with reflective focusing metasurface. AEU-Int J Electron Commun. 2021;134:153709.
  • Hosseininejad SE, Rouhi K, Neshat M, et al. Reprogrammable graphene-based metasurface mirror with adaptive focal point for THz imaging. Sci Rep. 2019;9(1):1–9.
  • Rouhi K, Hosseininejad SE, Abadal S, et al. Multi-channel near-field terahertz communications using reprogrammable graphene-based digital metasurface. J Lightwave Technol. 2021;39(21):6893–6907.
  • Hosseininejad SE, Rouhi K, Neshat M, et al. Digital metasurface based on graphene: an application to beam steering in terahertz plasmonic antennas. IEEE Trans Nanotechnology. 2019;18:734–746.
  • Shen Y, Xue S, Dong G, et al. Multiplexing tensor holographic metasurface with surface impedance superposition for manipulating multibeams with multimodes. Adv Opt Mat. 2021;9(22):2101340.
  • Vellucci S, Monti A, Barbuto M, et al. On the use of non-linear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas. IEEE Trans Antennas Propagation. 2021;69(8):5048–5053.
  • González-Ovejero D, Minatti G, Chattopadhyay G, et al. Multibeam by metasurface antennas. IEEE Trans Antennas Propagation. 2017;65(6):2923–2930.
  • Lee CH, Hoang TV, Chi SW, et al. Low profile quad-beam circularly polarised antenna using transmissive metasurface. IET Microwaves, Antennas Propagation. 2019;13(10):1690–1698.
  • Li S, Chen ZN, Li T, et al. Characterization of metasurface lens antenna for sub-6 GHz dual-polarization full-dimension massive MIMO and multibeam systems. IEEE Trans Antennas Propagation. 2020;68(3):1366–1377.
  • Lakhtakia A, Wolfe DE, Horn MW, et al., editors. Bioinspired multicontrollable metasurfaces and metamaterials for terahertz applications. Bioinspiration, biomimetics, and bioreplication 2017. International Society for Optics and Photonics, Vol. 10162, Portland (OR), USA; 2017.
  • Sheta E, Choudhury P, Ibrahim A-BM. Pixelated graphene-strontium titanate metamaterial supported tunable dual-band temperature sensor. Opt Mater. 2021;117:111197.
  • Sreekanth KV, Medwal R, Das CM, et al. Electrically tunable All-PCM visible plasmonics. Nano Lett. 2021;21(9):4044–4050.
  • Tanriover I, Hadibrata W, Scheuer J, et al. Neural networks enabled forward and inverse design of reconfigurable metasurfaces. Opt Exp. 2021;29(17):27219–27227.
  • Sheta E, Choudhury P, Ibrahim A-BM. Impact of metasurface deformation on the graphene-SrTiO3 pixelated metamaterial-based sensor. Optik. 2021;242:167174.
  • Zhang XG, Tang WX, Jiang WX, et al. Light-controllable digital coding metasurfaces. Adv Sci. 2018;5(11):1801028.
  • Yang H, Yu T, Wang Q, et al. Wave manipulation with magnetically tunable metasurfaces. Sci Rep. 2017;7(1):1–6.
  • Gordon JA, Holloway CL, Booth J, et al. Fluid interactions with metafilms/metasurfaces for tuning, sensing, and microwave-assisted chemical processes. Phys Rev B. 2011;83(20):205130.
  • Luo S, Hao J, Ye F, et al. Evolution of the electromagnetic manipulation: from tunable to programmable and intelligent metasurfaces. Micromachines. 2021;12(8):988.
  • Yang H, Cao X, Yang F, et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep. 2016;6(1):1–11.
  • Arbabi E, Arbabi A, Kamali SM, et al. MEMS-tunable dielectric metasurface lens. Nature Communications. 2018;9(1):1–9.
  • Pourmand M, Choudhury P, Mohamed MA. Tunable absorber embedded with GST mediums and trilayer graphene strip microheaters. Sci Rep. 2021;11(1):1–13.
  • Naqvi AH, Lim S. A beam-steering antenna with a fluidically programmable metasurface. IEEE Trans Antennas Propagation. 2019;67(6):3704–3711.
  • Fan Y, Wang J, Li Y, et al. Low-RCS multi-beam metasurface-inspired antenna based on pancharatnam–berry phase. IEEE TransAntennas Propagation. 2019;68(3):1899–1906.
  • Fu X, Yang F, Liu C, et al. Terahertz beam steering technologies: from phased arrays to field-programmable metasurfaces. Adv Opt Mater. 2020;8(3):1900628.
  • Li YB, Li LL, Xu BB, et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging. Sci Rep. 2016;6(1):1–8.
  • Nadi M, Rajabalipanah H, Cheldavi A, et al. Flexible manipulation of emitting beams using single-aperture circularly polarized digital metasurface antennas: multi-beam radiation toward vortex-beam generation. Adv Theory Simul. 2020;3(4):1900225.
  • Xu H-X, Cai T, Zhuang Y-Q, et al. Dual-mode transmissive metasurface and its applications in multibeam transmitarray. IEEE Trans Antennas Propagation. 2017;65(4):1797–1806.
  • Yurduseven O, Smith DR. Dual-polarization printed holographic multibeam metasurface antenna. IEEE Antennas Wireless Prop Lett. 2017;16:2738–2741.
  • Della Giovampaola C, Engheta N. Digital metamaterials. Nat Mater. 2014;13(12):1115–1121.
  • Cui TJ, Qi MQ, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Sci Appl. 2014;3(10):e218.
  • Kim M, Eleftheriades GV. Guided-wave-excited binary huygens’ metasurfaces for dynamic radiated-beam shaping with independent gain and scan-angle control. Phys Rev Appl. 2021;15(5):054037.
  • Shah SIH, Sarkar A, Phon R, et al. Beam-steering metasurface: two-dimensional electromechanically transformable metasurface with beam scanning capability using four independently controllable shape memory alloy axes (Advanced Optical Materials 22/2020). Adv Opt Mater. 2020;8(22):2070087.
  • Zhang N, Chen K, Zheng Y, et al. Programmable coding metasurface for dual-band independent real-time beam control. IEEE J Emerging Selected Topics in Circuits Syst. 2020;10(1):20–28.
  • Feng R, Ratni B, Yi J, et al. Versatile airy-beam generation using a 1-Bit coding programmable reflective metasurface. Phys Rev Appl. 2020;14(1):014081.
  • Liu B, He Y, Wong SW, et al. Multifunctional vortex beam generation by a dynamic reflective metasurface. Adv Opt Mat. 2021;9(4):2001689.
  • Liu G, Liu H, Han J, et al. Reconfigurable metasurface with polarization-independent manipulation for reflection and transmission wavefronts. J Phys D: Appl Phys. 2019;53(4):045107.
  • Wu LW, Ma HF, Wu RY, et al. Transmission-reflection controls and polarization controls of electromagnetic holograms by a reconfigurable anisotropic Digital coding metasurface. Adv Opt Mat. 2020;8(22):2001065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.