171
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the accuracy of an emitter localization method based on multipath exploitation in realistic scenarios

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 2178-2197 | Received 13 Jul 2021, Accepted 20 Apr 2022, Published online: 04 May 2022

References

  • Poisel R. Electronic warfare target location methods. Norwood (MA): Artech House; 2012.
  • Wang Y, Ho KC. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network. IEEE Trans Wirel Commun. 2015;14:6524–6535.
  • Chan Y-T, Ho KC. A simple and efficient estimator for hyperbolic location. IEEE Trans Signal Process. 1994;42:1905–1915.
  • Ho KC, Xu W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans Signal Process. 2004;52:2453–2463.
  • Wang Y, Ho KC. Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Trans Wirel Commun. 2017;17:1242–1254.
  • Rigling BD. Urban RF multipath mitigation. IET Radar Sonar Navig. 2008;2:419–425.
  • Waldmann B, Goetz A, Weigel R. An ultra wideband positioning system enhanced by a short multipath mitigation technique. 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID. IEEE; 2009. p. 1–4.
  • Yu J, Krolik J. MIMO multipath clutter mitigation for GMTI automotive radar in urban environments. IET International Conference on Radar Systems (Radar 2012). IET; 2012. p. 1–5.
  • Guo S, Cui G, Kong L, et al. An imaging dictionary based multipath suppression algorithm for through-wall radar imaging. IEEE Trans Aerosp Electron Syst 2017;54:269–283.
  • Guo S, Yang X, Cui G, et al. Multipath ghost suppression for through-the-wall imaging radar via array rotating. IEEE Geosci Remote Sens Lett. 2018;15:868–872.
  • Guerra A, Guidi F, Dardari D. Single-anchor localization and orientation performance limits using massive arrays: MIMO vs. beamforming. IEEE Trans Wirel Commun. 2018;17:5241–5255.
  • Wang Y, Wu Y, Shen Y. Joint spatiotemporal multipath mitigation in large-scale array localization. IEEE Trans Signal Process. 2019;67:783–797.
  • Copa EIP, Aziz K, Rykunov M, et al. Radar fusion for multipath mitigation in indoor environments. 2020 IEEE Radar Conference (RadarConf20). IEEE; 2020. p. 1–5.
  • Seow CK, Tan SY. Localization of omni-directional mobile device in multipath environments. Prog Electromagn Res. 2008;85:323–348.
  • Shen Y, Win MZ. On the use of multipath geometry for wideband cooperative localization. GLOBECOM 2009 – 2009 IEEE Global Telecommunications Conference; 2009. p. 1–6.
  • Lui KW, So HC. Range-based source localisation with pure reflector in presence of multipath propagation. Electron Lett. 2010;46:957–958.
  • Agate CS, Varble M, Ezal KO. Ground-based emitter location in the presence of multipath. 2019 IEEE Aerospace Conference; 2019. p. 1–8.
  • Meissner P, Witrisal K. Multipath-assisted single-anchor indoor localization in an office environment. 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP); 2012. p. 22–25.
  • Setlur P, Smith GE, Ahmad F, et al. Target localization with a single sensor via multipath exploitation. IEEE Trans Aerosp Electron Syst. 2012;48:1996–2014.
  • Muqaibel AH, Amin MG, Ahmad F. Target localization with a single antenna via directional multipath exploitation. Int J Antennas Propag. 2015: e510720.
  • O'Connor A, Setlur P, Devroye N. Single-sensor RF emitter localization based on multipath exploitation. IEEE Trans Aerosp Electron Syst. 2015;51:1635–1651.
  • Giacometti R, Baussard A, Jahan D, et al. Localization of radar emitters from a single sensor using multipath and TDOA-AOA measurements in a naval context. 2016 24th European Signal Processing Conference (EUSIPCO); 2016. p. 692–696.
  • Nikoo MS, Behnia F. Single-site source localisation using scattering data. IET Radar Sonar Navig. 2017;12:250–259.
  • Sousa Md, Thoma RS. Single sensor RF emitter location using ray tracing multipath exploitation. 2018 15th International Symposium on Wireless Communication Systems (ISWCS); 2018. p. 1–6.
  • Dalveren Y, Kara A. Multipath exploitation in emitter localization for irregular terrains. Radioengineering. 2019;27:473–482.
  • Liu Y, Guo F, Yang L, et al. An improved algebraic solution for TDOA localization with sensor position errors. IEEE Commun Lett. 2015;19:2218–2221.
  • Polka LA, Balanis CA, Polycarpou AC. High-frequency methods for multiple diffraction modeling: application and comparison. J Electromagn Waves Appl. 1994;8:1223–1246.
  • Kam K-Y, Chew L-Y, Li L-W. Multipath propagation of radio waves in 3-dimensional terrains. J Electromagn Waves Appl. 2001;15:411–431.
  • Tabakcioglu MB, Kara A. Comparison of improved slope uniform theory of diffraction with some geometrical optic and physical optic methods for multiple building diffractions. Electromagnetics. 2009;29:303–320.
  • Tabakcioglu MB, Kara A. Improvements on slope diffraction for multiple wedges. Electromagnetics. 2010;30:285–296.
  • Tabakcioglu MB. S-UTD-CH model in multiple diffractions. Int J Electron. 2016;103:765–774.
  • Azpilicueta L, Aguirre E, López-Iturri P, et al. An accurate UTD extension to a ray-launching algorithm for the analysis of complex indoor radio environments. J Electromagn Waves Appl. 2016;30:43–60.
  • Rizk K, Valenzuela R, Chizhik D, et al. Application of the slope diffraction method for urban microwave propagation prediction. VTC ‘98 48th IEEE Vehicular Technology Conference Pathway to Global Wireless Revolution (Cat No. 98CH36151); 1998. vol. 2, p. 1150–1155.
  • Kouyoumjian RG, Pathak PH. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc IEEE. 1974;62:1448–1461.
  • Tzaras C, Saunders SR. An improved heuristic UTD solution for multiple-edge transition zone diffraction. IEEE Trans Antennas Propag. 2001;49:1678–1682.
  • McNamara DA, Malherbe JAG, Pistorius CW. Introduction to the uniform geometrical theory of diffraction. Norwood (MA): Artech House; 1990.
  • Dalveren Y, Kara A. Comparative analysis of TDOA-based localization methods in the presence of sensor position errors. 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT); 2017. p. 0556.
  • Trivedi KS. Probability and statistics with reliability, queuing, and computer science applications. Hoboken (NJ): Wiley Online Library; 2002.
  • Ho KC, Lu X, Kovavisaruch L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans Signal Process. 2007;55:684–696.
  • Sharp I, Yu K, Guo YJ. GDOP analysis for positioning system design. IEEE Trans Veh Technol. 2009;58:3371–3382.
  • Lei Y-P, Gong F-X, Ma Y-Q. Optimal distribution for four-station TDOA location system. 2010 3rd International Conference on Biomedical Engineering and Informatics. IEEE; 2010. p. 2858–2862.
  • Levanon N. Lowest GDOP in 2-D scenarios. IEE Proc-Radar Sonar Navig. 2000;147:149–155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.