130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electromagnetic waves in layered nanoresonator systems including bi-isotropic and metamaterial layers: analytical model and characteristic features of proper waves

Pages 2647-2671 | Received 08 May 2022, Accepted 07 Jul 2022, Published online: 25 Jul 2022

References

  • Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics. 2011;5(523):1–8.
  • Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Materials. 2014;13:139–150.
  • Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol. 2016;11(1):23–36.
  • Su V-C, Chu CH, Sun G, et al. Advances in optical metasurfaces: fabrication and applications. Opt Express. 2018;26(10):13148–13182.
  • Wang Z, Cheng F, Winsor T, et al. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology. 2016;27(412001):1–20.
  • Asadchy VS, Diaz-Rubio A, Tretyakov SA. Bianisotropic metasurfaces: physics and applications. Nanophotonics. 2018;7(6):1069–1094.
  • Mun S-E, Hong J, Yun J-G, et al. Broadband circular polarizer for randomly polarized light in few-layer metasurface. Sci Rep. 2019;9(2543):1–8.
  • Yoo S, Park Q-H. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics. 2019;8(2):249–261.
  • Mun J, Kim M, Yang Y, et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light: Sci Appl. 2020;9(139):1–18.
  • Ma X, Pu M, Li X, et al. Meta-chirality: fundamentals, construction and applications. Nanomaterials. 2017;7(116):1–17.
  • Oh S, Hess O. Chiral metamaterials: enhancement and control of optical activity and circular dichroism. Nano Convergence. 2015;2(24):1–14.
  • Ashalley E, Ma C-P, Zhu Y-S, et al. Recent progress in chiral absorptive metamaterials. J Electr Sci and Technol. 2021;19(100098):1–25.
  • Kim J, Rana A, Kim Y, et al. Chiroptical metasurfaces: principles, classification, and applications. Sensors. 2021;21(4381):1–22.
  • Fedorov FI. Theory of gyrotropy. Minsk: Nauka i Tehnika; 1976; (in Russian).
  • Lindell IV, Sihvola AH, Tretyakov SA, et al. Electromagnetic waves in chiral and bi-isotropic media. Norwood (MA): Artech House; 1994.
  • Serdyukov A, Semchenko I, Tretyakov S, et al. Electromagnetics of bi-anisotropic materials, theory and applications. Evanston (IL): Routledge; 2001.
  • Oppermann M, Bauer B, Rossi T, et al. Ultrafast broadband circular dichroism in the deep ultraviolet. Optica. 2019;6(1):56–60.
  • Rizza C, Di Falco A, Scalora M, et al. One-dimensional chirality: strong optical activity in epsilon-near-zero metamaterials. Phys Rev Lett. 2015;115(057401):1–5.
  • Nesterov M, Yin X, Schäferling M, et al. The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics. 2016;3:578–583.
  • Baranov DG, Munkhbat B, Länk N, et al. Circular dichroism mode splitting and bounds to its enhancement with cavity-plasmon-polaritons. Nanophotonics. 2020;9(2):283–293.
  • Barik S, Karasahin A, Mittal S, et al. Chiral quantum optics using a topological resonator. Phys Rev B. 2020;101(205303):1–7.
  • Vestler D, Shishkin I, Gurvitz EA, et al. Circular dichroism enhancement in plasmonic nanorod metamaterials. Opt Express. 2018;26(14):17841–17848.
  • Plum E. Extrinsic chirality: tunable optically active reflectors and perfect absorbers. Appl Phys Lett. 2016;108(241905):1–4.
  • Nefedov IS, Gurvitz EA. Enhancement of circular dichroism in epsilon-near-zero chiral hyperbolic metamaterials. J Opt. 2020;22(015101):1–18.
  • Chang P-H, Kuo C-Y, Chern R-L. Wave propagation in bianisotropic metamaterials: angular selective transmission. Opt Express. 2014;22(21):25710–25721.
  • Zhang Q, Li J. Characteristics of surface plasmon polaritons in a dielectrically chiral-metal-chiral waveguiding structure. Opt Letters. 2016;41(14):3241–3244.
  • Hentschel M, Schäferling M, Duan X. Chiral plasmonics. Sci Adv. 2017;3(e1602735):1–12.
  • Cheng Y, Fu Chen F, Luo H. Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res Lett. 2021;16(12):1–9.
  • Zhao R, Koschny T, Soukoulis CM. Chiral metamaterials: retrieval of the effective parameters with and without substrate. Opt Express. 2010;18(14):14553–14567.
  • Andryieuski A, Radu M, Lavrinenko AV. Wave propagation retrieval method for chiral metamaterials. Opt Express. 2010;18(15):15498–15503.
  • Kapshai VN, Shamyna AA. Multiple reflection method in the problem of inclined electromagnetic wave incidence on the layered planar biisotropic medium. Proc F. Scorina Gomel State Univ. 2015;3(90):146–152.
  • Gorlach MA, Lapine M. Boundary conditions for the effective-medium description of subwavelength multilayered structures. Phys Rev B. 2020;101(075127):1–12.
  • Valagiannopoulos CA, Sihvola AH. Mimicking the perfect electromagnetic conducting scattering mechanisms with suitable bi-isotropic media. Electromagnetics. 2014;34(8):593–607.
  • Starodubtsev EG. Analytical modeling of nanometric perforated multilayers as perspective materials for ultra-thin holograms and phase transformers of reflected radiation. Mater Res Express. 2018;5(126202):1–16.
  • Starodubtsev E. Features of reflection of electromagnetic waves from nanometric perforated multilayers including epsilon-near-zero metamaterials. EPJ Appl Metamat. 2019;6(22):1–13.
  • Starodubtsev E. Features of transmission of electromagnetic waves through composite nanoresonators including epsilon-near-zero metamaterials. EPJ Appl Metamat. 2020;7(1):1–14.
  • Starodubtsev E. Transmission of layered nanoresonators including epsilon-near-zero metamaterials: interference-enabled opportunities to realize ultrathin polarization converters. J Electromagn Waves and Appl. 2021;35(6):766–783.
  • Fedorov FI. Optics of anisotropic media. 2nd edn. Moscow: Editorial URSS; 2004; (in Russian).
  • Asadchy VS, Mirmoosa MS, Diaz-Rubio A, et al. Tutorial on electromagnetic nonreciprocity and its origins. Proc IEEE. 2020;108(10):1–41.
  • Caloz C, Sihvola A. Electromagnetic chirality, part 2: the macroscopic perspective. IEEE Antenn Propag Mag. 2020;4:82–98.
  • Starodubtsev E. Effect of small anisotropy and absorption on metamaterial applications: “non-ideal” features of propagation and tunneling of electromagnetic waves. EPJ Appl Metamat. 2018;5(1):1–13.
  • Belov PA. Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis. Microwave Opt Technol Lett. 2003;37(4):259–263.
  • Shevchenko VV. Backward waves in chiral media and waveguides. J Commun Technol Electronics. 2005;50(11):1266–1271.
  • Shevchenko VV. Forward and backward waves: three definitions and their interrelation and applicability. Physics-Uspekhi. 2007;50(3):287–292.
  • Tretyakov S, Nefedov I, Sihvola A, et al. Waves and energy in chiral nihility. J Electromagn Waves and Appl. 2003;17(5):695–706.
  • Ra’di Y, Asadchy VS, Tretyakov SA. Nihility in non-reciprocal bianisotropic media. EPJ Appl Metamat. 2015;2(6):1–4.
  • Starodubtsev EG. Characteristic properties of electromagnetic wave interaction with uniaxial absorbing metamaterials: a case of the near-zero axial parameter. Metamaterials. 2010;4(1):32–43.
  • Lindell IV. Methods for electromagnetic field analysis. 2nd edn. New York: IEEE Press; 1995.
  • Guérin F. Energy dissipation and absorption in reciprocal bi-isotropic media described by different formalisms. PIER. 1994;9:31–44.
  • Friden J, Kristensson G, Sihvola A. Effect of dissipation on constitutive relations of bi-anisotropic media – the optical response. Electromagnetics. 1997;17(3):251–267.
  • Yariv A, Yeh P. Optical electronics in modern communications. 6th ed. New York: Oxford University Press; 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.