95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and simulation investigations of a high gain millimeter wave gyro-twystron amplifier

, &
Pages 2740-2755 | Received 17 Feb 2022, Accepted 17 Jul 2022, Published online: 30 Jul 2022

References

  • Thumm M. State-of-the-art of high power gyro-devices and free electron masers. Germany: Karlsruhe Institute of Technology; 2017. (Tech. Rep; no. 7693).
  • Kartikeyan MV, Borie E, Thumm M. Gyrotrons; high-power microwave and millimeter wave technology. Berlin: Springer; 2004.
  • Nusinovich GS, Li H. Theory of the relativistic gyro-twystron. Phys Fluids B. 1992;4(4):1058–1065.
  • Moiseev MA. Maximum amplification band of a CRM twistron. Radiophys Quantum Electron. 1977;20(8):1218–1223.
  • Tran TM, Kreischer KE. Temkin RJ. Theory of harmonic gyro-twystron. MIT Plasma Science: Cambridge; 1985; (PFC/JA; no. 85-35).
  • Malouf P, Granatstein V. Design and simulation of a gyro-twystron. Int J Electron. 1992;72(5):943–958.
  • Latham PE, Nusinovich GS, Cheng J. Stability of gyro-twystrons. Proceedings of the Particle Accelerators Conference; 1993 May 17–20; Washington, DC (USA); 1993. p. 2659–2660.
  • Nusinovich GS, Malouf PM, Granatstein VL. Theory of gyro-twystron with mixed transverse geometries of the various stages. IEEE Trans Plasma Sci. 1994;22(5):518–525.
  • Chen W, Nusinovich GS, Granatstein VL. Nonlinear theory of gyro-twystron with stagger-tuned cavities. IEEE Trans Plasma Sci. 1999;27(2):429–437.
  • Nusinovich GS, Chen W, Tripathi VK. Linear theory of a gyro-twystron with stagger-tuned cavities. IEEE Trans Plasma Sci. 1998;26(3):468–474.
  • Latham PE, Lawson W, Irwin V, et al. High power operation of and X-band gyro-twystron. Phys Rev Lett. 1994;72(23):3730–3733.
  • Lawson W, Latham PE, Calame JP, et al. High power operation of first and second harmonic gyro-twystron. J Appl Phys. 1995;78(1):550–559.
  • Malouf PM, Granatstein VL, Park SY, et al. Performance of a wideband, three-stage, mixed geometry gyro-twystron amplifier. IEEE Trans Electron Devices. 1995;42(9):1681–1685.
  • Blank M, Zasypkin EV, Levush B. An investigation of X-band gyro-twystron amplifiers. IEEE Trans Plasma Sci. 1998;26(3):577–581.
  • Choi JJ, McCurdy AH, Wood FN, et al. Experimental investigation of a high power, two-cavity, 35 GHz gyroklystron amplifier. IEEE Trans Plasma Sci. 1998;26(3):416–425.
  • Calame JP, Garven M, Choi JJ, et al. Experimental studies of bandwidth and power production in a three-cavity, 35 GHz gyroklystron amplifier. Phys Plasmas. 1999;6(1):285–297.
  • Garven M, Calame JP, Nguyen KT, et al. Experimental studies of a four cavity, 35 GHz gyroklystron amplifier. IEEE Trans Plasma Sci. 2000;28(3):672–680.
  • Garven M, Calame JP, Danly BG, et al. A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Trans Plasma Sci. 2002;30(3):885–893.
  • Wang H, Li H, Luo Y, et al. Theoretical and experimental investigation of a Ka-band gyro-TWT with lossy interaction structure. J Infrared Milli Terahertz Waves. 2011;32(1):172–185.
  • Kou CS, Wu MH, Tseng F. Nonlinear analysis of a multi-cavity gyro-twystron. Int J Infr Millim Waves 1997;8(10):1857–1883.
  • Chu KR, Chen HY, Hung CL, et al. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Trans Plasma Sci. 1999;27(2):391–404.
  • Du CH, Chang TH, Liu PK, et al. Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit. IEEE Trans Electron Devices. 2013;60(7):2388–2394.
  • Singh AS, Yuvaraj S, Thottappan M. Analytical and PIC simulation studies of a megawatt-class gyro-twystron amplifier. IEEE Trans Electron Devices. 2016;63(10):4104–4112.
  • Chu KR, Granatstein VL, Latham PE, et al. A 30-MW gyroklystron amplifier design for high energy linear accelerators. IEEE Trans Plasma Sci. 1985;13(6):424–434.
  • Sirigiri JR. Theory and design study of a novel quasi-optical gyrotron traveling wave amplifier [master’s thesis]. Cambridge (MA): Massachusetts Institute of Technology; 1999.
  • Baird JM, Lawson W. Magnetron injection gun (MIG) design for gyrotron applications. Int J Electron. 1986;61(6):953–967.
  • Yeh YS, Tsao MH, Chen HY, et al. Improved computer program for magnetron injection gun design. Int J Infr Millim Waves. 2000;21(9):1397–1415.
  • Herrmannsfeldt WB. EGUN—an electron optics and gun design program. California (USA): Stanford Linear Accelerator Center, Stanford University; 1988. (SLAC Rep; no. 331).
  • Dassault Systems. CST studio suite: electromagnetic field simulation software. Version 2021 [software]. Simulia. 2021 Jun 15 [Cited 2021 Jun 20]. Available from: https://3ds.com/products-services/simulia/products/cst-studio-suite.
  • Leou KC, Mcdermott DB, Balkcum AJ, et al. Stable high-power TE01 gyro-TWT amplifiers. IEEE Trans Plasma Sci. 1994;22(5):585–592.
  • Nguyen KT, Danly BG, Levush B, et al. Electron gun and collector design for 94-GHz gyro amplifiers. IEEE Trans Plasma Sci. 1998;26(3):799–813.
  • Alari MK, Choyal Y, Sinha AK. Design of a Ka-band gyro-TWT amplifier for broadband operation. Phys Plasmas. 2013;20(7):3110–3116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.