198
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Metamaterial-inspired quintuple band printed patch antenna for dense communication networks

& ORCID Icon
Pages 2785-2803 | Received 24 Jan 2022, Accepted 26 Jul 2022, Published online: 04 Aug 2022

References

  • IEEE 521-2002 IEEE standard letter designations for radar-frequency bands; 2021 Dec 01 [cited 2021 Dec 01]. Available from: https://standards.ieee.org/standard/521-2002.html
  • International Telecommunication Union's Radio Regulations; 2012; 2021 Dec 01 [cited 2021 Dec 01]. Available from: https://www.itu.int/pub/R-REG-RR
  • CISCO Annual internet report; 2021 Dec 01 [cited 2021 Dec 01]. Available from: https://www.cisco.com/c/m/en_us/solutions/service-provider/visual-networking-index.html
  • Wongkasem N. Electromagnetic pollution alert: microwave radiation and absorption in human organs and tissues. Electromagn Biol Med. 2021;40(2):1–18. DOI:10.1080/15368378.2021.1874976.
  • Yao Y, Chen W, Chen X, et al. Analysis and design of a novel multiband antenna for mobile terminals. Int J Antenn Propag. 2015: 1–9. DOI:10.1155/2015/591269.
  • Huang J, Dong G, Cai J, et al. A quad-port dual-band MIMO antenna array for 5G smartphone applications. Electronics. 2021;10(5):542), DOI:10.3390/electronics10050542.
  • Faisal GM, Alqaisy MA. Multi-band microstrip antenna design for mobile phone applications. Proceedings of the 2nd Al-Sadiq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA); 2017 Dec 30-31; Baghdad, Iraq: IEEE; 2019. DOI:10.1109/AIC-MITCSA.2017.8723008.
  • Surducan E, Surducan V, Iancu D, et al. Multiband antennas for SDR applications. Int J Digital Multimedia Broadcast. 2009: 1–9. DOI:10.1155/2009/460143.
  • Ashish K, Yeshaswini D, Subhash BK. A Metamaterial based multiband frequency reconfigurable antenna for wireless applications. Proceedings of the 2nd International Conference on Advances in Electronics, Computers and Communications (ICAECC); 2018 Feb 09-10; Bangalore, India: IEEE; 2018. DOI:10.1109/ICAECC.2018.8479498.
  • Thamil Selvi N, Thiruvalar Selvan P, Babu SP, et al. Multiband metamaterial-inspired antenna using split ring resonator. Computers & Electrical Engineering. 2020;84:106613. DOI:10.1016/j.compeleceng.2020.106613.
  • Bhasakar Reddy YV, Prasad AM, Swamy KV. Metamaterial inspired compact penta-band antenna for Wi-MAX, WLAN, satellite band and X-band applications. Proceedings of the IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT); 2020 July 02-04; Bangalore, India: IEEE; 2020. DOI:10.1109/CONECCT50063.2020.9198480.
  • Ameen M, Mishra A, Chaudhary RK. Asymmetric CPW-fed electrically small metamaterial- inspired wideband antenna for 3.3/3.5/5.5 GHz WiMAX and 5.2/5.8 GHz WLAN applications. Int J Electr Commun. 2020;119:153177. DOI:10.1016/j.aeue.2020.153177.
  • Thankachan S, Paul B. A compact metamaterial inspired CPW fed multiband monopole antenna for wireless applications. Proceedings of the IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting; 2020 July 05-10; Montreal, QC, Canada: IEEE; 2021. DOI:10.1109/IEEECONF35879.2020.9329799.
  • Dakhli S, Rmili H, Floch JM, et al. Printed multiband metamaterial-inspired antennas. Microw Optical Technol Lett. 2016;58(6):1281–1289. DOI:10.1002/mop.29792.
  • Kumar CM, Muvvala NK. Multi band metamaterial inspired L type slot patch antenna. Proceedings of the International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE); 2020 Oct 09-10; Bengaluru, India: IEEE; 2020. DOI:10.1109/ICSTCEE49637.2020.9277231.
  • Hasan MM, Faruque MRI, Islam MT. Dual band metamaterial antenna for LTE/bluetooth/WiMAX system. Sci Rep. 2018;8(1):1240–1217. DOI:10.1038/s41598-018-19705-3.
  • Bijayeh RA, Firouzeh ZH, Maddahali M. Multi-band metamaterial-inspired miniaturized patch antenna using RIS. Proceedings of the 24th Iranian Conference on Electrical Engineering (ICEE); 2016 May 10-12; Shiraz, Iran: IEEE; 2016. DOI:10.1109/IranianCEE.2016.7585593.
  • Rajak N, Chattoraj N, Mark R. Metamaterial cell inspired high gain multiband antenna for wireless applications. Int J Electr Commun. 2019;109:23–30. DOI:10.1016/j.aeue.2019.07.003.
  • Khader SA, Sahu S. Multiband microstrip antenna inspired by metasurface. Proceedings of the 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech); 2020 Oct 02-04; Kolkata, India: IEEE; 2020. DOI:10.1109/IEMENTech51367.2020.9270099.
  • Wang J, Wang W, Liu A, et al. Broadband metamaterial-based dual-polarized patch antenna with high isolation and low cross polarization. IEEE Trans Antennas Propag. 2021;69(11):7941–7946.
  • Xu J, Cao J, Guo M, et al. Metamaterial mechanical antenna for very low frequency wireless communication. Advan Comp Hybrid Mater. 2021;4:761–767.
  • Xu J, Chen L, Zhai X, et al. Generation of continuously variable-mode orbital angular momentum beams. Eng Sci. 2020;10:51–57.
  • Jin H, Chiou CY, Li AC, et al. Compact T-complementary split-ring resonator antenna and antenna array. J Electromagn Waves Applicat. 2021;35(16):2193–2209.
  • Li D, Szabó Z, Qing X, et al. A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans Antennas Propag. 2012;60(12):6018–6023.
  • Kim JH, Ahn CH, Bang JK. Antenna gain enhancement using a holey superstrate. IEEE Trans Antennas Propag. 2016;64(3):1164–1167.
  • Suthar H, Sarkar D, Saurav K. Gain enhancement of microstrip patch antenna using near-zero index metamaterial (NZIM) lens. Proceedings of the IEEE 21st national conference on communications (NCC); 2015 Feb 27; Mumbai, India: IEEE; 2015.
  • Attia H, Siddiqui O, Yousefi L. Metamaterial for gain enhancement of printed antennas: theory, measurements and optimization. Proceedings of the IEEE Saudi international electronics, communications and photonics conference (SIECPC); 2011 Apr 24-26; Riyadh, Saudi Arabia: IEEE; 2011.
  • Mark R, Rajak N, Mandal K, et al. Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application. AEU Int J Electron Commun. 2019;100:144–152.
  • Miri SO, Mohajeri F. Gain and bandwidth improvement of a cylindrical dielectric resonator antenna (CDRA) using metamaterial structures. Majlesi J Electr Eng. 2021;15(2):1–8.
  • Hussain N, Azimov U, Jeong M, et al. A high-gain microstrip patch antenna using multiple dielectric superstrates for WLAN applications. ACES J. 2020;35:2.
  • Bayat M, Khalilpour J. A high gain miniaturised patch antenna with an epsilon near zero superstrate. Mater Res Express. 2019;6(4):045806.
  • CST Microwave Studio Suites. 2021 Dec 01 [cited 2021 Dec 01]. Available from: https://www.3ds.com/products/services/simulia/products/cststudio-suite/CST
  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996;76:4773.
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Techn. 1999;47:11.
  • Kafesaki M, Koschny T, Penciu RS. Left-handed metamaterials: detailed numerical studies of the transmission properties. J Opt A Pure Appl Opt. 2005;7:S12.
  • Katsarakis N, Koschny T, Kafesaki M, et al. Electric coupling to the magnetic resonance of split ring resonators. Appl Phys Letter. 2004;84(15):2943–2945.
  • Marqués R, Medina F, Rafii-El-Idrissi R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B. 2002;65(14):144440.
  • Semchenko I, Serdyukov A. Electromagnetics of BI-ansotropic materials: theory and applications. Oxfordshire: Routledge Publisher; 2001.
  • Arritt BJ, Smith DR, Khraishi T. Equivalent circuit analysis of metamaterial strain-dependent effective medium parameters. J Appl Phys. 2011;109:073512.
  • Durán-Sindreu M, Naqui J, Paredes F, et al. Electrically small resonators for planar metamaterial, microwave circuit and antenna design: a comparative analysis. Appl Sci. 2012;2(2):375–395. DOI:10.3390/app2020375.
  • Baena JD, Bonache J, Martín F, et al. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microw Theory Tech. 2005;53(4II):1451–1460. DOI:10.1109/TMTT.2005.845211.
  • Steinberg K, Scheffler M, Dressel M. Microwave inductance of thin metal strips. J Appl Phys. 2010;108(9):096102–096102. DOI:10.1063/1.3505706.
  • Marques R, Martín F, Sorolla M. Metamaterials with negative parameters: theory, design and microwave applications. Hoboken: John Wiley & Sons, Inc.; 2008.
  • Chen X, Grzegorczyk TM, Wu BI, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E. 2004;70:016608.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.