108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Localized Green's function using a beam-pattern for the fast modeling of 2D electromagnetic scattering

ORCID Icon & ORCID Icon
Pages 2804-2826 | Received 03 Jan 2022, Accepted 22 Jul 2022, Published online: 06 Aug 2022

References

  • Harrington RF. Field computation by moment methods. Piscataway (NJ): Wiley-IEEE Press; 1993.
  • Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas Propag Mag. 1993;35(3):7–12.
  • Belenguer A, Esteban H, Boria V, et al. Computation of the scattering of electrically large 2D objects using FMM with TEz incidence. In: 2005 IEEE Antennas and Propagation Society International Symposium; Vol. 4. IEEE; 2005. p. 455–458.
  • Rui PL, Chen RS, Liu Z, et al. Schwarz-Krylov subspace method for MLFMM analysis of electromagnetic wave scattering problems. Prog Electromagn Res. 2008;82:51–63.
  • Canning FX. The impedance matrix localization (IML) method for moment-method calculations. IEEE Antennas Propag Mag. 1990;32(5):18–30.
  • Han SK, Michielssen E, Shanker B, et al. Impedance matrix localization based fast multipole acceleration. Radio Sci. 1998;33(6):1475–1488.
  • Felsen LB. Complex-source-point solutions of the field equations and their relation to the propagation and scattering of Gaussian beams. In: Symposia Mathematica, Instituto Nazionale di Alta Matematica. Academic Press; 1976. p. 39–56.
  • Suedan GA, Jull EV. Beam diffraction by planar and parabolic reflectors. IEEE Trans Antennas Propag. 1991;39(4):521–527.
  • Oğuzer T, Altintas A, Nosich AI. Accurate simulation of reflector antennas by the complex source-dual series approach. IEEE Trans Antennas Propag. 1995;43(8):793–801.
  • Boriskin AV, Nosich AI. Whispering-gallery and Luneburg-lens effects in a beam-fed circularly layered dielectric cylinder. IEEE Trans Antennas Propag. 2002;50(9):1245–1249.
  • Boriskin AV, Sauleau R, Nosich AI. Performance of hemielliptic dielectric lens antennas with optimal edge illumination. IEEE Trans Antennas Propag. 2009;57(7):2193–2198.
  • Tsitsas NL, Valagiannopoulos CA, Nosich AI. Scattering and absorption of a complex source point beam by a grounded lossy dielectric slab with a superstrate. J Opt. 2014;16(10):105712.
  • Bulygin VS, Benson TM, Gandel YV, et al. Full-wave analysis and optimization of a TARA-like shield-assisted paraboloidal reflector antenna using a Nystrom-type method. IEEE Trans Antennas Propag. 2013;61(10):4981–4989.
  • Erez E, Leviatan Y. Electromagnetic scattering analysis using a model of dipoles located in complex space. IEEE Trans Antennas Propag. 1994;42(12):1620–1624.
  • Boag A, Mittra R. Complex multipole beam approach to electromagnetic scattering problems. IEEE Trans Antennas Propag. 1994;42(3):366–372.
  • Boag A, Mittra R. Complex multipole-beam approach to three-dimensional electromagnetic scattering problems. J Opt Soc Am A. 1994;11(4):1505–1512.
  • Boag A, Michielssen E, Mittra R. Hybrid multipole beam approach to electromagnetic scattering problems. J Appl Comput Electromagn Soc. 1994;9:7–17.
  • Tap K. Complex source point beam expansions for some electromagnetic radiation and scattering problems [dissertation]. The Ohio State University; 2007
  • Tap K, Pathak PH, Burkholder RJ. Exact complex source point beam expansions for electromagnetic fields. IEEE Trans Antennas Propag. 2011;59(9):3379–3390.
  • Tap K, Pathak PH, Burkholder RJ. Complex source beam-moment method procedure for accelerating numerical integral equation solutions of radiation and scattering problems. IEEE Trans Antennas Propag. 2014;62(4):2052–2062.
  • Kutluay D, Oğuzer T. The fast computation of the electromagnetic scattering by using the complex line source type Green's function in the method of moments. In: 2017 IEEE Microwaves, Radar and Remote Sensing Symposium (MRRS). IEEE; 2017. p. 224–228.
  • Kutluay D, Oğuzer T. Fast modeling of electromagnetic scattering from 2D electrically large PEC objects using the complex line source type Green's function. Int J Microw Wirel Technol. 2019;11(3):276–286.
  • Oğuzer T, Kutluay D. A novel impedance matrix localization for the fast modeling of 2D electromagnetic scattering using the localized Green's function. In: 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF). IEEE; 2019. p. 1–2.
  • Lee JH, Kim HT. Selection of sampling interval for the GPOF method. J Electromagn Waves Appl. 1999;13(9):1269–1281.
  • Hua Y, Sarkar TK. Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans Antennas Propag. 1989;37(2):229–234.
  • Mohammadi-Ghazi R, Büyüköztürk O. Sparse generalized pencil of function and its application to system identification and structural health monitoring. In: Health Monitoring of Structural and Biological Systems 2016; Vol. 9805. SPIE; 2016. p. 86–94.
  • Dural G, Aksun MI. Closed-form Green's functions for general sources and stratified media. IEEE Trans Microw Theory Tech. 1995;43(7):1545–1552.
  • Chow YL, Yang J, Fang D, et al. A closed-form spatial Green's function for the thick microstrip substrate. IEEE Trans Microw Theory Tech. 1991;39(3):588–592.
  • Volakis JL, Sertel K. Integral equation methods for electromagnetics. Vol. 2. Raleigh (NC): IET; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.