240
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analytical analysis of inhomogeneous and anisotropic metamaterial cylindrical waveguides using transformation matrix method

, , ORCID Icon &
Pages 53-68 | Received 06 Jan 2022, Accepted 22 Jul 2022, Published online: 19 Aug 2022

References

  • Agrawal GP. Fiber-optic communication systems. Hoboken (NJ): John Wiley & Sons; 2012.
  • Ghatak A, Thyagarajan K. An introduction to fiber optics. New York (NY): Cambridge University Press; 1998.
  • Okamoto K. Fundamentals of optical waveguides. Burlington: Academic Press; 2006.
  • Schurig D, Mock JJ, Justice B, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 5801;314:977–980.
  • Jin B, Zhang C, Engelbrecht S, et al. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Opt Express. 2010;18(16):17504–17509.
  • Zhang X, Liu Z. Superlenses to overcome the diffraction limit. Nat Mater. 2008;7(6):435–441.
  • Paul O, Imhof C, Reinhard B, et al. Negative index bulk metamaterial at terahertz frequencies. Opt Express. 2008;16(9):6736–6744.
  • Rho J, Ye Z, Xiong Y, et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat Commun. 2010;1(1):1–5.
  • Bhardwaj A, Ramakrishna SA. Focusing properties of a spherical perfect lens with eccentric deformations. JOSA B. 2016;33(9):2000–2009.
  • Belov PA, Zhao Y, Tse S, et al. Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range. Phys Rev B. 2008;77(19):193108.
  • Ramakrishna SA, Pendry J. Spherical perfect lens: solutions of Maxwell's equations for spherical geometry. Phys Rev B. 2004;69(11):115115.
  • Lim S, Caloz C, Itoh T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth. IEEE Trans Microw Theory Tech. 2004;52(12):2678–2690.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402.
  • Dayal G, Ramakrishna SA. Design of highly absorbing metamaterials for infrared frequencies. Opt Express. 2012;20(16):17503–17508.
  • Bhardwaj A, Singh G, Srivastava KV, et al. Polarization insensitive optically transparent microwave metamaterial absorber using complementary layer. IEEE Antennas and Wireless Propagation Letters. 2022;21(1):163–167.
  • Bhardwaj A, Sharma A, Srivastava KV, et al.Polarization insensitive resistive ink based conformal absorber for s, c bands. In 2019 IEEE Indian Conference on Antennas and Propogation (InCAP); IEEE; 2019. p. 1–4
  • Singh G, Bhardwaj A, Srivastava KV, et al. Perforated lightweight microwave metamaterial broadband absorber with discontinuous ground plane. Appl Phys A. 2021;127(11):1–9.
  • Vashisth R, Ghodgaonkar DK, Gupta S. Broadband microwave absorber using pixelated FSS embedded in CISR sheets in frequency range of 3.95 to 8.2 gHz. J Electromagn Waves Appl. 2021;35(17):2349–2367.
  • Behera JK, Liu K, Lian M, et al. A reconfigurable hyperbolic metamaterial perfect absorber. Nanoscale Adv. 2021;3(6):1758–1766.
  • Al-badri KSL, Abdulkarim YI, Alkurt FÖ, et al. Simulated and experimental verification of the microwave dual-band metamaterial perfect absorber based on square patch with a 450 diagonal slot structure. J Electromagn Waves Appl. 2021;.
  • Singh G, Sharma B, Bhardwaj A, et al. Wrapping of curved surfaces with conformal broadband metamaterial microwave absorber. IEEE Antennas Wirel Propag Lett. 2021;20(10):1938–1942.
  • Dhumal A, Bhardwaj A, Srivastava KV. Polarization insensitive multilayered broadband absorber for l and s bands of the radar spectrum. Microw Opt Technol Lett. 2021;63(4):1229–1235.
  • Talghader JJ, Gawarikar AS, Shea RP. Spectral selectivity in infrared thermal detection. Light Sci Appl. 2012;1(8):e24–e24.
  • Kuznetsov SA, Paulish AG, Gelfand AV, et al. Bolometric tHz-to-IR converter for terahertz imaging. Appl Phys Lett. 2011;99(2):023501.
  • Schurig D, Mock J, Justice B, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 5801;314:977–980.
  • Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 5781;312:1780–1782.
  • Wei C, Cen M, Chui HC, et al. Numerical study of biosensor based on α-moo3/au hyperbolic metamaterial at visible frequencies. J Phys D Appl Phys. 2020;54(3):034001.
  • Bhardwaj A, Pratap D, Srivastava KV, et al. Highly sensitive permittivity sensor using an inhomogeneous metamaterial cylindrical waveguide. IEEE Sensors Journal. 2021
  • Bhardwaj A, Srivastava KV, Pratap D, et al. Inhomogeneous, anisotropic metamaterial clad waveguide for sensing applications. In 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP); IEEE; 2019. p. 83–84
  • Liu Y, Hao Y, Li K, et al. Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial. IEEE Antennas Wirel Propag Lett. 2016;15:80–83.
  • Paquay M, Iriarte JC, Ederra I, et al. Thin AMC structure for radar cross-section reduction. IEEE Trans Antennas Propag. 2007;55(12):3630–3638.
  • Brûlé S, Javelaud E, Enoch S, et al. Experiments on seismic metamaterials: molding surface waves. Phys Rev Lett. 2014;112(13):133901.
  • Miniaci M, Krushynska A, Bosia F, et al. Large scale mechanical metamaterials as seismic shields. New J Phys. 2016;18(8):083041.
  • Shadrivov IV, Sukhorukov AA, Kivshar YS. Guided modes in negative-refractive-index waveguides. Phys Rev E. 2003;67(5):057602.
  • Meng FY, Wu Q, Erni D, et al. Controllable metamaterial-loaded waveguides supporting backward and forward waves. IEEE Trans on Ant and Prop. 2011;59(9):3400–3411.
  • Ibanescu M, Johnson SG, Roundy D, et al. Microcavity confinement based on an anomalous zero group-velocity waveguide mode. Opt Lett. 2005;30(5):552–554.
  • Pollock JG, Iyer AK. Below-cutoff propagation in metamaterial-lined circular waveguides. IEEE Trans Microw Theory Tech. 2013;61(9):3169–3178.
  • Bhardwaj A, Srivastava KV, Ramakrishna SA. Propagation of wave in a cylindrical waveguide filled with hyperbolic negative index medium. Microw Opt Tech Lett. 2020;62(11):3385–3390.
  • Bhardwaj A, Srivastava KV, Ramakrishna S. A hyperbolic metamaterial near-field coupler. In 2019 IEEE Asia-Pacific Microwave Conference (APMC); IEEE; 2019. p. 1736–1738
  • Khalilpour J, Hakkak M. S-shaped ring resonator as anisotropic uniaxial metamaterial used in waveguide tunneling. J Electromagn Waves Appl. 2009;23(13):1763–1772.
  • Bhardwaj A, Pratap D, Semple M, et al. Properties of waveguides filled with anisotropic metamaterials. Comp Rend Phys. 2020;21(7–8):677–711.
  • Krauss TF. Slow light in photonic crystal waveguides. J Phys D Appl Phys. 2007;40(9):2666.
  • Pratap D, Bhardwaj A, Ramakrishna SA. Inhomogeneously filled, cylindrically anisotropic metamaterial optical fiber. J Nanophotonics. 2018;12(3):033002.
  • Bhardwaj A, Srivastava KV, Ramakrishna SA. Enhanced coupling of light from subwavelength sources into a hyperbolic metamaterial fiber. J Lightwave Technol. 2019;37(13):3064–3072.
  • Khalaj-Amirhosseini M. Analysis of longitudinally inhomogeneous waveguides using the method of moments. Prog Electromagn Res. 2007;74:57–67.
  • Nouroozi R. Effect of waveguide inhomogeneity in a χ (2)-based pulsed optical parametric amplifier. J Lightwave Technol. 2017;35(9):1693–1699.
  • Dalarsson M, Norgren M, Jaksic Z. Exact analytical solution for fields in a lossy cylindrical structure with linear gradient index metamaterials. Prog Electromagn Res. 2015;151:109–117.
  • Dalarsson M, Jakšić Z. Exact analytical solution for fields in a lossy cylindrical structure with hyperbolic tangent gradient index metamaterials. Optical Quantum Electron. 2016;48(3):1–6.
  • Venkatesh S, Schurig D. Transformation optics design of a planar near field magnifier for sub-diffraction imaging. Opt Express. 2019;27(4):4694–4713.
  • Schurig D, Pendry J, Smith D. Transformation-designed optical elements. Opt Express. 2007;15(22):14772–14782.
  • Gurvitz E, Vozianova A, Khodzitsky M. Simulation of beam-splitter made of metamaterials with angle spatial distribution of constitutive parameters based on transformation optics for tHz frequency range. In J Phys Conf Ser; Vol. 541; IOP Publishing; 2014. p. 012067
  • Yang Y, Chen H, Yu F, et al. A full-parameter, broadband, homogeneous, and compact waveguide coupler designed with transformation optics. IEEE Antennas Wirel Propag Lett. 2014;14:634–637.
  • Maiti S, Maiti AK, Gangopadhyay S. Laser diode to single-mode triangular-index fiber excitation via upside down hemispherical microlens on the fiber tip: prescription of abcd matrix of transmission and estimation of coupling efficiency. Optik. 2017;144:481–489.
  • Chen H, Chan C. Transformation media that rotate electromagnetic fields. Appl Phys Lett. 2007;90(24):241105.
  • Zhang Z, Li S, Wang J. Novel microstrip antenna design upon transformation medium. IEEE Antennas Wirel Propag Lett. 2014;14:543–546.
  • Keivaan A, Fakheri MH, Abdolali A, et al. Design of coating materials for cloaking and directivity enhancement of cylindrical antennas using transformation optics. IEEE Antennas Wirel Propag Lett. 2017;16:3122–3125.
  • Liu D, Gabrielli LH, Lipson M, et al. Transformation inverse design. Opt Express. 2013;21(12):14223–14243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.