208
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A metal hybrid resistive film ultra-wideband metamaterial absorber for infrared region

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 231-244 | Received 20 Apr 2022, Accepted 05 Sep 2022, Published online: 28 Sep 2022

References

  • Costa F, Monorchio A, Manara G. Theory, design and perspectives of electromagnetic wave absorbers. IEEE Electromagn Compat Mag. 2016;5(2):67–74.
  • Tirkey MM, Gupta N. Electromagnetic absorber design challenges. IEEE Electromagn Compat Mag. 2019;8(1):59–65.
  • Piersanti S, Paulis F, Orlandi A, et al. Near-field shielding performances of EMI noise suppression absorbers. IEEE Trans Electromagn Compat. 2017;59(2):654–661.
  • Kim J, Han K, Hahn JW. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci Rep. 2017;7:1–9.
  • Michishita N, Watanabe T, Yamada Y, et al. Simplified local specific absorption rate measurement method using lightweight phantom composed of wave absorber embedded of electric field probe. IEEE Trans Electromagn Compat. 2012;54(1):181–187.
  • Lu X, Wan R, Liu F, et al. High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures. J Modern Opt. 2016;63(2):177–183.
  • Emerson W. Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans Antennas Propag. 1973;21(4):484–490.
  • Rastgordani A, Kashani ZG, Abrishamian MS. Analytical design of all-dielectric grating as a narrowband absorber. Opt Commun. 2019;452:95–100.
  • Chen H, Lu W-B, Liu Z-G, et al. Experimental demonstration of microwave absorber using large-area multilayer graphene-based frequency selective surface. IEEE Trans Microw Theory Tech. 2018;66(8):3807–3816.
  • Xuemei D, Yan F, Wang W, et al. A polarization- and angle-insensitive broadband tunable metamaterial absorber using patterned graphene resonators in the terahertz band. Opt Laser Tech. 2020;132:106513.
  • Yahiaoui R, Tan S, Cong L, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J Appl Phys. 2015;118:083103.
  • Xing R, Jian S. A dual-band THz absorber based on graphene sheet and ribbons. Opt Laser Tech. 2018;100:129–132.
  • Kim DI, Takahashi M, Anzai H, et al. Electromagnetic wave absorber with wide-band frequency characteristics using exponentially tapered ferrite. IEEE Trans Electromagn Compat. 1996;38(2):173–177.
  • Airoldi A, Novak N, Sgobba F, et al. Foam-filled energy absorbers with auxetic behaviour for localized impacts. Mater Sci Eng A. 2020;788:139500.
  • Riley EJ, Lenzing EH, Narayanan RM. Application of unidirectional carbon-fiber-reinforced-polymer laminas in circuit-analog absorbers. IEEE Trans Electromagn Compat. 2018;60(6):1743–1751.
  • Zhang Y, Huang Y, Liang X, et al. Preparation and microwave absorption of nitrogen-doped carbon nanotubes With iron particles. IEEE Trans Magn. 2018;54(7):1–6.
  • Chen J, Hu J, Deng X-H, et al. Enhanced THz absorption of graphene cavity-based electromagnetic metamaterial structures. J Modern Opt. 2020;67(6):547–551.
  • Salisbury WW. Absorbent body for electromagnetic waves. U. S. Patent No. 2599944, Jun. 1952.
  • Du Toit LJ. The design of Jauman absorbers. IEEE Antennas Propag Mag. 1994;36(6):17–25.
  • Zhang B, Jin C, Shen Z. Low-profile broadband absorber based on multimode resistor-embedded metallic strips. IEEE Trans Microw Theory Techn. 2020;68(3):835–843.
  • Chen J, Shang Y, Liao C. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays. IEEE Antennas Wireless Propag Lett. 2018;17(4):591–595.
  • Zabri SN, Cahill R, Schuchinsky A. Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement. Electron Lett. 2015;51(2):162–164.
  • Costa F, Monorchio A, Manara G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans Antennas Propag. 2010;58(5):1551–1558.
  • Marzena O-P, Bartlomiej S, Daniel J, et al. A broadband absorber with a resistive pattern made of ink with graphene nano-platelets. IEEE Trans Antennas Propag. 2015;63(2):565–572.
  • Tsuda Y, Yasuzumi T, Hashimoto O. A thin wave absorber using closely placed divided conductive film and resistive film. IEEE Antennas Wireless Propag Lett. 2011;10:892–895.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100:207402.
  • Bilal RMH, Saeed MA, Choudhury PK, et al. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime. Sci Rep. 2020;10(1):14035.
  • Ruan J, Ji S, Tao Z, et al. Ultra-wideband metamaterial absorber doped GaAs in the infrared region. J Electromagn Waves Appl. 2021;35(8):1088–1098.
  • Pourmand M, Choudhury PK, Mohamed MA. Tunable absorber embedded with GST mediums and trilayer grapheme strip microheaters. Sci Rep. 2021;11(1):3603.
  • Bilal RMH, Baqir MA, Choudhury PK, et al. Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial. IEEE Access. 2021;9:5670–5677.
  • Wang T, Ding M-D, He H-H, et al. Ultra-wideband polarization- and angle-insensitive metamaterial absorber based on multilayer resistive ink. J Electromagn Waves Appl. 2022;36(2):272–284.
  • Sheta EM, Choudhury PK. Nanoengineered hafnium nitride hyperbolic metasurface based polarization insensitive UWB absorber. IEEE Photonics Technol Lett. 2021;33(24):1351–1354.
  • Sheokan H, Ghosh S, Singh G, et al. Transparent broadband metamaterial absorber based on resistive films. J Appl Phys. 2017;122:105105.
  • Wang B, Gong B Y, Wang M, et al. Dendritic wideband metamaterial absorber based on resistance film. Appl Phys A. 2015;118:1559–1563.
  • Shen Y, Pei Z, Pang Y, et al. An extremely wideband and lightweight metamaterial absorber. J Appl Phys. 2015;117:224503.
  • Peng L, Ran L, Chen H, et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys Rev Lett. 2007;98:157403.
  • Liu X-X, Alu A. Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach. Phys Rev B. 2013;87:235136.
  • Ling X, Xiao Z, Zheng X, et al. Broadband and polarization-insensitive metamaterial absorber based on hybrid structures in the infrared region. J Modern Opt. 2017;64(7):665–671.
  • Xie T, Chen Z, Ma R, et al. A wide-angle and polarization insensitive infrared broad band metamaterial absorber. Opt Commun. 2017;383:81–86.
  • Luo Y, Meng D, Liang Z, et al. Ultra-broadband metamaterial absorber in long wavelength infrared band based on resonant cavity modes. Opt Commun. 2020;459:124948.
  • Mohammad SZ, Najmeh N, Reza R. A strong controllable absorber using graphenemetal nanostructure. J Modern Opt. 2019;66(1):7–16.
  • Liu Z, Li J, He L, et al. Graphene-based dual-band tunable perfect absorber in THz range. J Modern Opt. 2021;68(2):93–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.