407
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Tree-shaped fractal metamaterial multiband absorber for C- and X-band applications

, , ORCID Icon, &
Pages 257-270 | Received 12 Apr 2022, Accepted 21 Sep 2022, Published online: 21 Oct 2022

References

  • Smith DR, Schultz S, Markoš P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002;65:195104.
  • Duan Z, Guo C, Chen M. Enhanced reversed Cherenkov radiation in a waveguide with double-negative metamaterials. Opt Express. 2011;19:13825–13830.
  • Sabah C, Dincer F, Karaaslan M, et al. New-generation chiral metamaterials based on rectangular split ring resonators with small and constant chirality over a certain frequency band. IEEE Trans Antennas Propag. 2014;62:5745–5751.
  • Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics. 2018;7:1169–1190.
  • Liu T, Cao X, Gao J, et al. RCS reduction of waveguide slot antenna with metamaterial absorber. IEEE Trans Antennas Propag. 2013;61:1479–1484.
  • Yang Y, Xu Y, Zhang B, et al. Investigating flexible band-stop metamaterial filter over THz. Opt Commun. 2019;438:39–45.
  • Pourmand M, Choudhury PK. Wideband THz filtering by graphene-over-dielectric periodic structures with and without MgF2 defect layer. IEEE Access. 2020;8:137385–137394.
  • Zhu J, Ma Z, Sun W, et al. Ultra-broadband terahertz metamaterial absorber. Appl Phys Lett. 2014;105:021102.
  • Baqir MA, Choudhury PK. Hyperbolic metamaterial-based UV absorber. IEEE Photonics Technol Lett. 2017;29:1548–1551.
  • Baqir MA, Choudhury PK. Design of hyperbolic metamaterial-based absorber comprised of Ti nanospheres. IEEE Photonics Technol Lett. 2019;31:735–738.
  • Bilal RM, Baqir MA, Choudhury PK, et al. Ultrathin broadband metasurface-based absorber comprised of tungsten nanowires. Results Phys. 2020;19:103471.
  • Chen H, Wang J, Ma H, et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J Appl Phys. 2014;115:154504.
  • Baqir MA, Choudhury PK, Farmani A, et al. Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure. IEEE Photonics J. 2019;11:1–10.
  • Bilal RM, Baqir MA, Choudhury PK, et al. Tunable and multiple plasmon-induced transparency in a metasurface comprised of silver s-shaped resonator and rectangular strip. IEEE Photonics J. 2020;12:1–13.
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292:77–79.
  • Baqir MA, Farmani A, Fatima T, et al. Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl Opt. 2018;57:9447–9454.
  • Hao J, Zhou L, Qiu M. Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys Rev B. 2011;83:165107.
  • Nguyen VC, Chen L, Halterman K. Total transmission and total reflection by zero index metamaterials with defects. Phys Rev Lett. 2010;105:233908.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100:207402.
  • Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science. 2005;308:534–537.
  • Kim J, Han K, Hahn JW. Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci Rep. 2017;7:1–9.
  • Garg P, Jain P. Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band. IEEE Trans Circ Syst II: Express Briefs. 2020;67:675–679.
  • Gil I, Fernández-García R. Electromagnetic interference reduction in printed circuit boards by using metamaterials: a conduction and radiation impact analysis. J Electromagn Waves Appl. 2014;28:378–388.
  • Ding F, Cui Y, Ge X, et al. Ultra-broadband microwave metamaterial absorber. Appl Phys Lett. 2012;100:103506.
  • Huang J, Li J, Yang Y, et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces. Opt Express. 2020;28:17832–17840.
  • Bilal RM, Saeed MA, Choudhury PK, et al. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime. Sci Rep. 2020;10:1–2.
  • Deng G, Lv K, Sun H, et al. An ultrathin, triple-band metamaterial absorber with wide-incident-angle stability for conformal applications at X and Ku frequency band. Nanoscale Res Lett. 2020;15:1–10.
  • Deng G, Sun H, Lv K, et al. 3d rampart-based dual-band metamaterial absorber with wide-incident-angle stability. Appl Phys Express. 2021;14:022005.
  • Ni B, Chen XS, Huang LJ, et al. A dual-band polarization insensitive metamaterial absorber with split ring resonator. Opt Quantum Electron. 2013;45:747–753.
  • Luo Z, Ji S, Zhao J, et al. A multiband metamaterial absorber for GHz and THz simultaneously. Results Phys. 2021;30:104893.
  • Zhou J, Wang M, Shu X, et al. Facile synthesis of La-doped cobalt ferrite@ glucose-based carbon composite as effective multiband microwave absorber. J Am Ceram Soc. 2021;104(104):2191–2200.
  • Akhtar MN, Makhdoom S, Baqir MA, et al. Enhanced structural, electromagnetic and absorption features of CoSm ferrite-metamaterial absorbers through synergistic effects. Ceram Int. 2022.
  • Chen T, Li SJ, Cao XY, et al. Ultra-wideband and polarization-insensitive fractal perfect metamaterial absorber based on a three-dimensional fractal tree microstructure with multi-modes. Appl Phys A. 2019;125:1–8.
  • Costa F, Monorchio A. A frequency selective radome with wideband absorbing properties. IEEE Trans Antennas Propag. 2012;60:2740–2747.
  • Nguyen TT, Lim S. Design of metamaterial absorber using eight-resistive-arm cell for simultaneous broadband and wide-incidence-angle absorption. Sci Rep. 2018;8:1–0.
  • Soheilifar MR, Sadeghzadeh RA. Design, fabrication and characterization of stacked layers planar broadband metamaterial absorber at microwave frequency. AEU-Int J Electron Commun. 2015;69:126–132.
  • Huang S, Xie Z, Chen W, et al. Metasurface with multi-sized structure for multi-band coherent perfect absorption. Opt Express. 2018;26:7066–7078.
  • Ye Q, Liu Y, Lin H, et al. Multi-band metamaterial absorber made of multi-gap SRRs structure. Appl Phys A. 2012;107:155–160.
  • Jiang H, Xue Z, Li W, et al. Multiband polarisation insensitive metamaterial absorber based on circular fractal structure. IET Microwaves, Antenn Propagat. 2016;10:1141–1145.
  • Ma Y, Zhang H, Li Y, et al. Miniaturized and dual-band metamaterial absorber with fractal sierpinski structure. J Opt Soc Am B. 2014;31:325–331.
  • Divdel H, Taghipour-Farshi H, Saghai HR, et al. Multiband terahertz metasurface absorber using Hilbert fractal. Opt Eng. 2020;59:127108.
  • Faruque MR, Hasan MM, Islam MT. Tree-shaped fractal meta-surface with left-handed characteristics for absorption application. Appl Phys A. 2018;124:1–8.
  • Sabah C, Dincer F, Karaaslan M, et al. Polarization-insensitive fss-based perfect metamaterial absorbers for GHz and THz frequencies. Radio Sci. 2014;49:306–314.
  • Naser-Moghadasi M, Nia AZ, Toolabi M, et al. Microwave metamaterial absorber based on Jerusalem cross with meandered load for bandwidth enhancement. Optik. 2017;140:515–522.
  • Jafari FS, Naderi M, Hatami A, et al. Microwave Jerusalem cross absorber by metamaterial split ring resonator load to obtain polarization independence with triple band application. AEU-Int J Electron Commun. 2019;101:138–144.
  • Tran CM, Van Pham H, Nguyen HT, et al. Creating multiband and broadband metamaterial absorber by multiporous square layer structure. Plasmonics. 2019;14:1587–1592.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.