177
Views
0
CrossRef citations to date
0
Altmetric
Articles

Theory and measurement of the single and hybrid-mode excitation and evolution in a lossy-dielectric-loaded waveguide

ORCID Icon, , , , , , , , & show all
Pages 510-523 | Received 18 Jul 2022, Accepted 12 Nov 2022, Published online: 21 Nov 2022

References

  • Thumm M. State-of-the-art of high-power gyro-devices and free electron masers. Int J Infr Millim Waves. 2020;41:1–140.
  • Samsonov SV, Denisov GG, Gachev IG, et al. CW operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube. IEEE Trans Electron Device Lett. 2020;41:773–776.
  • Sirigiri JR, Shapiro MA, Temkin RJ. High-power 140-GHz quasi-optical gyrotron traveling-wave amplifier. Phys Rev Lett. 2003;90:258302.
  • Chu KR. The electron cyclotron maser. Rev Mod Phys. 2004;76:489.
  • Nanni EA, Jawla S, Lewis SM, et al. Photonic-band-gap gyrotron amplifier with picosecond appl. Phys Lett. 2017;111:233504.
  • Du CH, Liu PK. Millimeter-wave gyrotron traveling-wave tube amplifiers. 1st ed. New York (NY): Springer; 2014.
  • Liu G, Wang W, Jiang W, et al. Theory, simulation and millimeter-wave measurement of the operating and parasitic modes in a high loss dielectric loaded gyrotron traveling wave amplifier. Prog Electromagn Res C. 2021;111:35–46.
  • Wang J, Tian Q, Li X, et al. Theory and experiment investigate of a 400-kW Ku-band gyro-TWT with mode selective loss loading structure. IEEE Trans Electron Devices. 2017;64:550–555.
  • Xu Y, Mao Y, Wang W J, et al. Proof-of-principle experiment of a 20-kW-average-power Ka-band gyro-traveling wave tube with a cut-off waveguide section. IEEE Trans Electron Device Lett. 2020;41:769–772.
  • Yan R, Luo Y, Liu G, et al. Design and experiment of a Q-band gyro-TWT loaded with lossy dielectric. IEEE Trans Electron Devices. 2012;59:3612–3617.
  • Liu G, Jiang W, Yao YL, et al. High average power test of a W-band broadband gyrotron traveling wave tube IEEE trans. Electron Device Lett. 2022;43:950–953.
  • Liu G, Cao YJ, Wang Y, et al. Design and cold test of a G-band 10-kW-level pulse TE01-mode gyrotron traveling-wave tube. IEEE Trans Electron Devices. 2022;69:2668–2674.
  • Liu G, Wang Y, Wang W, et al. Influence of the background plasma on the performance for X-band gyrotron traveling wave tubes. 22nd International Vacuum Electronics Conference (IVEC), Rotterdam, Netherlands; 2021. p. 1–2.
  • Calame JP, Abe DK. Applications of advanced materials technologies to vacuum electronic devices. Proc IEEE. 1999;87:840–864.
  • Sebastian MT, Ubic R, Jantunen H. Microwave materials and applications. Chichester: John Wiley and Sons; 2017.
  • Jing C, Kanareykin A, Power JG, et al. Experimental demonstration of Wakefield acceleration in a tunable dielectric loaded accelerating structure. Phys Rev Lett. 2011;106:164802.
  • Calame JP, Cook AM. Design and large-signal modeling of a W-band dielectric TWT. IEEE Trans Plasma Sci. 2017;45:2820–2834.
  • Du CH, Xue QZ, Liu PK. Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling-wave-tube applications. IEEE Trans Electron Device Lett. 2008;29:1256–1258.
  • Du CH, Xue QZ, Liu PK, et al. Modal transition and reduction in a lossy dielectric-coated waveguide for gyrotron-traveling-wave tube amplifier applications. IEEE Trans Electron Devices. 2009;56:839–845.
  • Du CH, Liu PK. A lossy dielectric-ring loaded waveguide with suppressed periodicity for gyro-TWTs applications. IEEE Trans Electron Devices. 2009;56:2335–2342.
  • Kiiko VS, Pavlov AV, Bykov VA. Production and thermophysical properties of BeO ceramics with the addition of nanocrystalline titanium dioxide. Refract Ind Ceram. 2019;59:616–622.
  • Harrington RF. Time harmonic electromagnetic fields. New York (NY): McGraw-Hill Book Co; 1961.
  • Clarricoats PJB, Taylor BC. Evanescent and propagating modes of dielectric-loaded circular waveguide. Proc Inst Elect Eng. 1964;111:1951–1956.
  • Zaki KA, Atia AE. Modes in dielectric-loaded waveguides and resonators. IEEE Trans Microw Theory Techn. 1983;31:1039–1045.
  • Lee CS, Lee SW, Chuang SL. Normal modes in an overmoded circular waveguide coated with lossy material. IEEE Trans Microw Theory Techn. 1986;34:773–785.
  • Lai CH, You B, Lu JY, et al. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. Optics Express. 2010;18:309–322.
  • Li H, Ren G, Atakaramians S, et al. Linearly polarized single TM mode terahertz waveguide. Opt Lett. 2016;41:4004–4007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.