109
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Designing cladding mode interference device – a host for sensors and all-fiber inline gain-flattening component and broad-band filter

&
Pages 1522-1539 | Received 31 Jan 2023, Accepted 11 Sep 2023, Published online: 21 Sep 2023

References

  • Chen S, Zhang C, Wang J, et al. A fiber Bragg grating sensor based on cladding mode resonance for label-free biosensing. Biosensors. 2023;13:97. doi:10.3390/bios13010097
  • Zhu L, et al. Optical fiber SPR magnetic field sensor based on photonic crystal fiber with the magnetic fluid as cladding. Meas Sci Technol. 2021: 32.
  • Wang Q, Wang B-T, Kong L-X, et al. Comparative analyses of bi-tapered fiber Mach–Zehnder interferometer for refractive index sensing. IEEE Trans Instrum Meas. 2017;66(9):2483–2489.
  • Yao Q, Meng H, Wang W, et al. Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating. Sens Actuator A Phys. 2014;209:73–77. doi:10.1016/j.sna.2014.01.017
  • Rahman HA, Harun SW, Yasin M, et al. Tapered plastic multimode fiber sensor for salinity detection. Sens Actuator A Phys. 2011;171:219–222. doi:10.1016/j.sna.2011.09.024
  • Xu B, Liu YM, Wang DN. Fiber Fabry–Pérot interferometer for measurement of gas pressure and temperature. J Light Technol. 2016;34(21):4920–4925. doi:10.1109/JLT.2016.2598573
  • Choi B-H, Lee SS. Input power dynamic range analysis of SOA and EDFA link extenders on TDM–PON systems without burst effect control. J Opt Commun. 2013;286:187–191. doi:10.1016/j.optcom.2012.09.019
  • Zhou P, Zhan W, Mukaikubo M, et al. Reflective semiconductor optical amplifier with segmented electrodes for high-speed self-seeded colorless transmitter. J Opt Express. 2017;25:28547–28555. doi:10.1364/OE.25.028547
  • Javorsky IB, Silva RE, Pohl AAP. Wavelength tunable filter based on acousto-optic modulation of a double-core fiber. IEEE Photonics Technol Lett. 2019;31(14):1135–1138. doi:10.1109/LPT.2019.2919483
  • Wang P, Zhao H, Yamakawa T, et al. Polarization-independent flat-top band-rejection filter based on the phase-modulated HLPG. IEEE Photonics Technol Lett. 2020;32(3):170–173.
  • Cárdenas-Sevilla GA, Monzón-Hernández D, Minkovich VP. Demonstration of an all-fiber band-rejection filter based on a tapered photonic crystal fiber. Appl Phys Express. 2012;5(2):022502. doi:10.1143/APEX.5.022502
  • Song D-R, Lee KJ, Kim BY. Band-rejection filtering based on lossy torsional acousto-optic coupling in a single polarization fiber. Opt Express. 2014;22(20):24034–24043. doi:10.1364/OE.22.024034
  • Kang Q, Lim E-L, Yongmin J, et al. Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration. Opt Express. 2012;20(19):20835–20843. doi:10.1364/OE.20.020835
  • Ni N, Chan CC, Tan KM, et al. Broad-band EDFA gain flattening by using an embedded long-period fiber grating filter. Opt Commun. 2007;271(2):377–381. doi:10.1016/j.optcom.2006.10.033
  • Yun SH, Lee BW, Kim HK, et al. Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters. IEEE Photonics Technol Lett. 1999;11(10):1229–1231. doi:10.1109/68.789700
  • Rochette M, LaRochelle S, Guy M, et al. Experimental investigation of erbium-doped fiber amplifier gain equalization schemes using short-period Bragg gratings. In: Chang-Hasnain C, Knox W, Kafka J, etal, editors. Conference on lasers and electro-optics. OSA Technical Digest. Optica Publishing Group; Baltimore, MD, USA, 1999. Paper CMC2.
  • Zhu Y, Shum P, Lu C, et al. EDFA gain flattening using phase-shifted long-period grating. Microw Opt Technol Lett. 2003;37(2):153–157. doi:10.1002/mop.10853
  • Kumar N, Ramachandran K. Mach–Zehnder interferometer concatenated fiber loop mirror based gain equalization filter for an EDFA. Opt Commun. 2013;289:92–96. doi:10.1016/j.optcom.2012.10.003
  • Yang J, Meng X, Liu C. Accurately control and flatten gain spectrum of L-band erbium doped fiber amplifier based on suitable gain-clamping. Opt Laser Technol. 2016;78:74–78. doi:10.1016/j.optlastec.2015.10.019
  • Al-Azzawi AA, Almukhtar AA, Dhar A, et al. Gain-flattened hybrid EDFA operating in C + L band with parallel pumping distribution technique. IET Optoelectron. 2020;14(6):447–451. doi:10.1049/iet-opt.2020.0072
  • Bouzid B, Fawwaz AK. New topology of wide band EDFA using split band double pass amplification. Microw Opt Technol Lett. 2016;58(9):2093–2096. doi:10.1002/mop.29986
  • Mao L, Ping L, Zefeng L, et al. Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing. Opt Laser Technol. 2014;57:39–43.
  • Zhang C, Tigang N, Jingjing Z, et al. An optical fiber strain sensor by using of taper based TCF structure. Opt Laser Technol. 2019;120:105687.
  • Ma J, et al. Sensitivity-enhanced temperature sensor based on encapsulated S-taper fiber Modal interferometer. Opt Laser Technol. 2021;139:106933.
  • Wu Q, Yuwei Q, Juan L, et al. Singlemode-multimode-singlemode fiber structures for sensing applications – a review. IEEE Sens J. 2021;21(11):12734–12751. doi:10.1109/JSEN.2020.3039912
  • Almazrouei M, Adeyemi I, Janajreh I. Thermogravimetric assessment of the thermal degradation during combustion of crude and pure glycerol. Biomass Conv Bioref. 2022;12:4403–4417. doi:10.1007/s13399-022-02526-w
  • Wang F, Liu Y, Wei H,, et al. Temperature-Insensitive, wide-range optical fiber vibration sensor based on dispersion-compensated fiber. IEEE Sens J. 2023;23(14):15597–15606. doi:10.1109/JSEN.2023.3280346
  • Peng X., Cha Y., Zhang H., et al. Light intensity modulation temperature sensor based on U-shaped bent single-mode fiber. Optik. 2017;130:813–817. doi:10.1016/j.ijleo.2016.11.003
  • Ming-shun J, Sui Q, Jin Z, et al. Temperature-independent optical fiber Fabry–Perot refractive-index sensor based on hollow-core photonic crystal fiber. Optik. 2014;125:3295–3298. doi:10.1016/j.ijleo.2013.12.062
  • Li Z, Wang Y, Liao C, et al. Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer. Sens Actuators B: Chem. 2014;199:31–35. doi:10.1016/j.snb.2014.03.071
  • Dissanayake KPW, Wu W, Nguyen H, et al. Graphene-oxide-coated long-period grating-based fiber optic sensor for relative humidity and external refractive index. J Light Technol. 2017;36:1145–1151. doi:10.1109/JLT.2017.2756097
  • Hassan S, et al. Evaluation of physicochemical parameters of selected brands of pharmaceutical oils sold in Punjab, Pakistan. Lat Am J Pharm. 2014;33:115–122.
  • Barroso ND. Comparison of the tuning capability of erbium-doped multiwavelength ring lasers having different host fiber material. J Opt Commun. 2007;28(2):123–126. doi:10.1515/JOC.2007.28.2.123
  • Hajireza P, Emami SD, Abbasizargaleh S, et al. Optimization of gain flattened C-band EDFA using macro-bending. Laser Phys. 2010;20:1433–1437. doi:10.1134/S1054660X10110071
  • Bebawi JA, Elzahaby EA, Kandas I, et al. FBG performance enhancement for sensing and EDFA gain flattening applications. J Comput Electron. 2021;20:745–757. doi:10.1007/s10825-020-01600-8
  • Kogure T, Furusawa K, Lee JH, et al. An erbium doped holey fiber amplifier and ring laser. Proceeding of European Conference Optical Communication (ECOC 2003). 2003; p. 21–25.
  • Cucinotta A, Poli F, Selleri S. Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers. IEEE Photon Technol Lett. 2004;16:2027–2029. doi:10.1109/LPT.2004.833109
  • Mondal K, Roy Chaudhuri P. Designing high performance Er+3-doped fiber amplifier in triangular-lattice photonic crystal fiber host towards higher gain, low splice loss. Opt Laser Technol. 2011;43:1436–1441. doi:10.1016/j.optlastec.2011.04.015
  • Zhu C, Zhao H, Wang P, et al. Enhanced flat-Top band-rejection filter based on reflective helical long-period fiber gratings. IEEE Photonics Technol Lett. 2017;29(12):964–966.
  • Zhu C, Zhao H, Li H. Mode-couplings in two cascaded helical long-period fibre gratings and their application to polarization-insensitive band-rejection filter. Opt Commun. 2018;423:81–85. doi:10.1016/j.optcom.2018.04.012
  • Xu H, Shi Y. Flat-Top CWDM (De)multiplexer based on MZI With bent directional couplers. IEEE Photonics Technol Lett. 2018;30(2):169–172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.