65
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ultra-broadband perfect absorber based on sub-grating structure

, &
Pages 203-212 | Received 15 Aug 2022, Accepted 05 Nov 2023, Published online: 27 Nov 2023

References

  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402, doi:10.1103/PhysRevLett.100.207402
  • Liu C, Qi L, Wu M. Triple-broadband infrared metamaterial absorber with polarization-independent and wide-angle absorption. Opt Mater Express. 2018;8(8):2439–2448. doi:10.1364/OME.8.002439
  • Gao H, Peng W, Cui W, et al. Ultraviolet to near infrared titanium nitride broadband plasmonic absorber. Opt Mater. 2019;97:109377, doi:10.1016/j.optmat.2019.109377
  • Chen Q, Gu J, Liu P, et al. Nanowire-based ultra-wideband absorber for visible and ultraviolet light. Opt Laser Technol. 2018;105:102–105. doi:10.1016/j.optlastec.2018.02.049
  • Li C, Fan H, Dai Q, et al. Multipole resonance in arrays of diamond dielectric: a metamaterial perfect absorber in the visible regime. Nanomaterials. 2019;9(9):1222, doi:10.3390/nano9091222
  • Bilal RMH, Saeed MA, Choudhury PK, et al. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime. Sci Rep. 2020;10(1):14035, doi:10.1038/s41598-020-71032-8
  • Hoque A, Islam MT. Numerical analysis of single negative broadband metamaterial absorber based on tri thin layer material in visible spectrum for solar cell energy harvesting. Plasmonics. 2020;15(4):1061–1069. doi:10.1007/s11468-020-01132-8
  • Zou J, Yu P, Wang W, et al. Broadband mid-infrared perfect absorber using fractal Gosper curve. J Phys D: Appl Phys. 2020;53(10):105106, doi:10.1088/1361-6463/ab57ea
  • Feng H, Li X, Wang M, et al. Ultrabroadband metamaterial absorbers from ultraviolet to near-infrared based on multiple resonances for harvesting solar energy. Opt Express. 2021;29(4):6000–6010. doi:10.1364/OE.419269
  • Osgouei AK, Hajian H, Serebryannikov AE, et al. Hybrid indium tin oxide-Au metamaterial as a multiband bi-functional light absorber in the visible and near-infrared ranges. J Phys D: Appl Phys. 2021;54(27):275102, doi:10.1088/1361-6463/abf579
  • Bilal RMH, Baqir MA, Hameed M, et al. Triangular metallic ring-shaped broadband polarization-insensitive and wide-angle metamaterial absorber for visible regime. J Opt Soc Am A. 2022;39(1):136–142. doi:10.1364/JOSAA.444523
  • Cong J, Yao H, Gong D, et al. Broadening of absorption band by coupled gap plasmon resonances in a near-infrared metamaterial absorber. Appl Phys Express. 2016;9(7):72001, doi:10.7567/APEX.9.072001
  • Yue S, Hou M, Wang R, et al. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials. Opt Express. 2020;28(21):31844–31861. doi:10.1364/OE.403551
  • Zhang F, Wang Q, Ding L. Broadband near-infrared metamaterial absorber based on rainbow trapping effect. Opt Commun. 2020;475:126284, doi:10.1016/j.optcom.2020.126284
  • Guo S, Hu C, Zhang H. Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence. J Opt Soc Am B. 2020;37(9):2678–2687. doi:10.1364/JOSAB.399048
  • Liao S, Sui J, Zhang H. Switchable ultra-broadband absorption and polarization conversion metastructure controlled by light. Opt Express. 2022;30(19):34172–34187. doi:10.1364/OE.472336
  • Sui J, Dong R, Liao S, et al. Janus metastructure based on magnetized plasma material with and logic gate and multiple physical quantity detection. Ann Phys. 2023;535(3):2200509, doi:10.1002/andp.202200509
  • Sui J, Liao S, Dong R, et al. A Janus logic gate with sensing function. Ann Phys. 2023;535(4):2200661, doi:10.1002/andp.202200464
  • Farsari M, Chichkov BN. Two-photon fabrication. Nat Photonics. 2009;3(8):450–452. doi:10.1038/nphoton.2009.131
  • Xiong X, Xue Z-H, Meng C, et al. Polarization-dependent perfect absorbers/reflectors based on a three-dimensional metamaterial. Phys Rev B. 2013;88(11):115105, doi:10.1103/PhysRevB.88.115105
  • Famularo NR, Kang L, Li Z, et al. Linear and nonlinear chiroptical response from individual 3D printed plasmonic and dielectric micro-helices. J Chem Phys. 2020;153(15):154702, doi:10.1063/5.0020539
  • Jeong HY, Lee E, An S-C, et al. 3D and 4D printing for optics and metaphotonics. Nanophotonics. 2020;9(5):1139–1160. doi:10.1515/nanoph-2019-0483
  • Hendrickson-Stives AK, Kang L, Donahue NR, et al. 3D printed metamaterial absorbers for mid-infrared surface-enhanced spectroscopy. Appl Phys Lett. 2022;120(19):191703, doi:10.1063/5.0093332
  • Pierce DT, Spicer WE. Electronic structure of amorphous Si from photoemission and optical studies. Phys Rev B. 1972;5(8):3017–3029. doi:10.1103/PhysRevB.5.3017
  • Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6(12):4370–4379. doi:10.1103/PhysRevB.6.4370
  • Hajian H, Rukhlenko ID, Hanson GW, et al. Tunable plasmon-phonon polaritons in anisotropic 2D materials on hexagonal boron nitride. Nanophotonics. 2020;9(12):3909–3920. doi:10.1515/nanoph-2020-0080
  • Erçağlar V, Hajian H, Rukhlenko ID, et al. α-MoO3–SiC metasurface for mid-IR directional propagation of phonon polaritons and passive daytime radiative cooling. Appl Phys Lett. 2022;121(18):182201, doi:10.1063/5.0128110
  • Liu J, Ma W-Z, Chen W, et al. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared. Opt Express. 2020;28(16):23748–23760. doi:10.1364/OE.399198
  • Cong J, Zhou Z, Yun B, et al. Broadband visible-light absorber via hybridization of propagating surface plasmon. Opt Lett. 2016;41(9):1965–1968. doi:10.1364/OL.41.001965
  • Gomes de Souza IL, Rodriguez-Esquerre VF. Omnidirectional broadband absorber for visible light based on a modulated plasmonic multistack grating. Opt Laser Technol. 2020;124:105981, doi:10.1016/j.optlastec.2019.105981

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.