110
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ultra-wideband absorber based on graphene surface with polarization insensitivity under large angles

ORCID Icon, , , , , , , & show all
Pages 313-326 | Received 03 Mar 2023, Accepted 02 Oct 2023, Published online: 20 Feb 2024

References

  • Munk BA. Frequency selective surface: theory and design. Hoboken (NJ): Wiley; 2005.
  • Narayan S, Sangeetha, B. Design of low observable antenna using active hybrid-element FSS structure for stealth applications. Int J Electron Commun. 2017;80:137–143. doi:10.1016/j.aeue.2017.06.038
  • Habib S, Kiani GI. A convoluted frequency selective surface for wideband communication applications. IEEE Access. 2019;7:65075–65082. doi:10.1109/ACCESS.2019.2916882
  • Pazokian M, Komjani N. Broadband RCS reduction of microstrip antenna using coding frequency selective surface. IEEE Antennas Wirel Propag Lett. 2018;17:1382–1385. doi:10.1109/LAWP.2018.2846613
  • Salisbury WW. Absorbent body for electromagnetic waves, U.S. Patent: 2599944, Jun. 1952.
  • Leendert JDT. The design of Jauman absorbers. IEEE Antennas Propag Mag. 1994;36:17–25. doi:10.1109/74.370526
  • Mei P, Zhang XS, Lin GQ, et al. A triple-band absorber with wide absorption bandwidths using an impedance matching theory. IEEE Antennas Wirel Propag Lett. 2019;18:521–552. doi:10.1109/LAWP.2019.2895971
  • Ghosh S, Bhattacharyya S, Chaurasiya D, et al. Polarisation-insensitive and wide-angle multi-layer metamaterial absorber with variable bandwidths. Electron Lett. 2015;51:1050–1052. doi:10.1049/el.2015.1167
  • Lin XQ, Mei P, Zhang PC, et al. Development of a resistor-loaded ultrawideband absorber with antenna reciprocity. IEEE Trans Antennas Propag. 2016;64:4910–4913. doi:10.1109/TAP.2016.2598202
  • Chen Q, Sang D, Guo M, et al. Miniaturized frequency-selective rasorber with a wide transmission band using circular spiral resonator. IEEE Trans Antennas Propag. 2019;67:1045–1052. doi:10.1109/TAP.2018.2880043
  • Mei P, Lin XQ, Yu JW, et al. A band-notched absorber designed with high notch-band-edge selectivity. IEEE Trans Antennas Propag. 2017;65:3560–3567. doi:10.1109/TAP.2017.2705151
  • Panaretos AH, Brocker DE, Werner DH. Ultra-thin absorbers comprised by cascaded high-impedance and frequency selective surfaces. IEEE Antennas Wirel Propag Lett. 2015;14:1089–1092. doi:10.1109/LAWP.2015.2390145
  • Yang J, Shen Z. A thin and broadband absorber using doublesquare loops. IEEE Antennas Wirel Propag Lett. 2007;6:388–391. doi:10.1109/LAWP.2007.903496
  • Li S, Cao X, Gao J, et al. Analysis and design of three-layer perfect metamaterial-inspired absorber based on double split-serration-rings structure. IEEE Trans Antennas Propag. 2015;63:5155–5160. doi:10.1109/TAP.2015.2475634
  • Kundu D, Mohan A, Chakrabarty A. Single-layer wideband microwave absorber using array of crossed dipoles. IEEE Antennas Wirel Propag Lett. 2016;15:1589–1592. doi:10.1109/LAWP.2016.2517663
  • Wang CY, Liang J-G, Cai T, et al. High-performance and ultra-broadband metamaterial absorber based on mixed absorption mechanisms. IEEE Access. 2019;7:57259–57266.
  • Hossain MI, Trong NN, Abbosh AM. Broadband magnetic absorber based on double-layer frequency-selective surface. IEEE Trans Antennas Propag. 2022;70:410–419. doi:10.1109/TAP.2021.3096199
  • Zuo P, Li T, Wang M, et al. Miniaturized polarization insensitive metamaterial absorber applied on EMI suppression. IEEE Access. 2020;8:6583–6590. doi:10.1109/ACCESS.2019.2957308
  • Ghosh S, Lim S. Perforated lightweight broadband metamaterial absorber based on 3-D printed honeycomb. IEEE Antennas Wirel Propag Lett. 2018;17:2379–2383. doi:10.1109/LAWP.2018.2876023
  • Tiwari P, Pathak SK, Anitha VP. Design of an ultra wideband polarization insensitive and wide angle metasurface absorber based on resistive-ink. IEEE International Conference on Computational Electromagnetics. 2020, Singapore, p. 243–245.
  • Deng GS, Yu ZC, Yang J, et al. A miniaturized 3-D metamaterial absorber with wide angle stability. IEEE Microwave Compon Lett. 2022;32:1111–1114. doi:10.1109/LMWC.2022.3169599
  • Deng GS, Sun HX, Lv K, et al. 3D rampart-based dual-band metamaterial absorber with wide-incident-angle stability. Appl Phys Express. 2021;14:22005. doi:10.35848/1882-0786/abd9ff
  • Das S, Sudhagar P, Ito E, et al. Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. J Mater Chem. 2012;22:20490–20497. doi:10.1039/c2jm32481d
  • Das S, Sudhagar P, Nagarajan S, et al. Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon. 2012;50:4815–4821. doi:10.1016/j.carbon.2012.06.006
  • Balci O, Polat EO, Kakenov N, et al. Graphene enabled electrically switchable radar-absorbing surfaces. Nat Commun. 2015;6(6628). doi:10.1038/ncomms7628
  • Gei AK, Novoselov KS. The rise of graphene. Nate Mater. 2007;6:183–191. doi:10.1038/nmat1849
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534. doi:10.1126/science.1158877
  • Novoselov KS, Fal VI, Colombo L, et al. A roadmap for graphene. Nature. 2012;490:192–200. doi:10.1038/nature11458
  • Huang C, Song K. Simultaneous control of absorbing frequency and amplitude using graphene capacitor and active frequency-selective surface. IEEE Antennas Wirel Propag Lett. 2021;69:1793–1798. doi:10.1109/TAP.2020.3011115
  • Jain P, Singh AK, Pandey JK, et al. Ultra-thin metamaterial perfect absorbers for single-/dual- /multi-band microwave applications. IET Microwaves Antennas Propag. 2020;14:390–396. doi:10.1049/iet-map.2019.0623
  • Sambhav S, Singh AK. Ultra-wideband polarization insensitive thin absorber based on resistive concentric circular rings. IEEE Trans Electromagn Compat. 2021;63:1333–1340. doi:10.1109/TEMC.2021.3058583
  • Tak J, Jin Y, Choi J. A dual-band metamaterial microwave absorber. Microwave Opt Technol Lett. 2016;58:2052–2057. doi:10.1002/mop.29977
  • Das S, Sudhagar P, Verma V, et al. Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv Funct Mater. 2011;21:3729–3736. doi:10.1002/adfm.201101191

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.