170
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Three-octave supercontinuum spanning with Z-cut lithium niobate photonic waveguide

&
Pages 611-617 | Received 03 Mar 2023, Accepted 04 Feb 2024, Published online: 26 Feb 2024

References

  • Boyraz O, Indukuri T, Jalali B. Self-phase-modulation induced spectral broadening in silicon waveguides. Opt Express. 2004;12(5):829–834. doi: 10.1364/OPEX.12.000829
  • Dulkeith E, Vlasov YA, Chen X, et al. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt Express. 2006;14(12):5524–5534. doi: 10.1364/OE.14.005524
  • Dudley JM, Taylor JR. Supercontinuum generation in optical fibers. Cambridge: Cambridge University Press; 2010.
  • Kuyken B, Ideguchi T, Holzner S, et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat Commun. 2015;6(1):1–6. doi: 10.1038/ncomms7310
  • Singh N, Hudson DD, Yu Y, et al. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica. 2015;2(9):797–802. doi: 10.1364/OPTICA.2.000797
  • May S, Clerici M, Sorel M. Supercontinuum generation in dispersion engineered ALGaAs-on-insulator waveguides. Sci Rep. 2021;11(1):1–7. doi: 10.1038/s41598-021-81555-3
  • Kuyken B, Billet M, Leo F, et al. Octave-spanning coherent supercontinuum generation in an ALGaAs-on-insulator waveguide. Opt Lett. 2020;45(3):603–606. doi: 10.1364/OL.45.000603
  • Lu J, Surya JB, Liu X, et al. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt Lett. 2019;44(6):1492–1495. doi: 10.1364/OL.44.001492
  • Yu M, Desiatov B, Okawachi Y, et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt Lett. 2019;44(5):1222–1225. doi: 10.1364/OL.44.001222
  • Karim M, Al Kayed N, Hossain MR, et al. Study of low-peak-power highly coherent broadband supercontinuum generation through a dispersion-engineered Si-rich silicon nitride waveguide. Appl Opt. 2020;59(20):5948–5956. doi: 10.1364/AO.395705
  • Johnson AR, Mayer AS, Klenner A, et al. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt Lett. 2015;40(21):5117–5120. doi: 10.1364/OL.40.005117
  • Carlson DR, Hickstein DD, Lind A, et al. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt Lett. 2017;42(12):2314–2317. doi: 10.1364/OL.42.002314
  • Guo H, Herkommer C, Billat A, et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat Photonics. 2018;12(6):330–335. doi: 10.1038/s41566-018-0144-1
  • Feng X, Shi J, Segura M, et al. Towards water-free tellurite glass fiber for 2−5μm nonlinear applications. Fibers. 2013;1(3):70–81. doi: 10.3390/fib1030070
  • Falconi MC, Laneve D, Prudenzano F. Advances in mid-IR fiber lasers: tellurite, fluoride and chalcogenide. Fibers. 2017;5(2):23. doi: 10.3390/fib5020023
  • Wang Y, Dai S, Han X, et al. Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2S step-index fibers. Opt Commun. 2018;410:410–415. doi: 10.1016/j.optcom.2017.10.056
  • Chauhan P, Kumar A, Kalra Y. Mid-infrared broadband supercontinuum generation in a highly nonlinear rectangular core chalcogenide photonic crystal fiber. Opt Fiber Technol. 2018;46:174–178. doi: 10.1016/j.yofte.2018.10.004
  • Schliesser A, Brehm M, Keilmann F, et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt Express. 2005;13(22):9029–9038. doi: 10.1364/OPEX.13.009029
  • Diddams SA, Udem T, Bergquist J, et al. An optical clock based on a single trapped 199hg+ ion. Science. 2001;293(5531):825–828. doi: 10.1126/science.1061171
  • Corrigan P, Martini R, Whittaker EA, et al. Quantum cascade lasers and the Kruse model in free space optical communication. Opt Express. 2009;17(6):4355–4359. doi: 10.1364/OE.17.004355
  • Pang X, Ozolins O, Schatz R, et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature. Opt Lett. 2017;42(18):3646–3649. doi: 10.1364/OL.42.003646
  • Jones DJ, Diddams SA, Ranka JK, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science. 2000;288(5466):635–639. doi: 10.1126/science.288.5466.635
  • Okawachi Y, Yu M, Cardenas J, et al. Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide. Opt Lett. 2018;43(19):4627–4630. doi: 10.1364/OL.43.004627
  • Hickstein DD, Jung H, Carlson DR, et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys Rev Appl. 2017;8(1):Article ID 014025. doi: 10.1103/PhysRevApplied.8.014025
  • Leidinger M, Fieberg S, Waasem N, et al. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range. Opt Express. 2015;23(17):21690–21705. doi: 10.1364/OE.23.021690
  • Garcia-Lechuga M, Siegel J, Hernandez-Rueda J, et al. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of lithium niobate irradiated with femtosecond laser pulses. J Appl Phys. 2014;116(11):Article ID 113502. doi: 10.1063/1.4895833
  • Ilyas K, Naqvi QA. Dispersion engineered mid-IR supercontinuum generation using multi-core silicon-rich nitride photonic integrated waveguide. Optik. 2022;256:Article ID 168699. doi: 10.1016/j.ijleo.2022.168699
  • Jia J, Kang Z, Huang Q, et al. Mid-infrared highly efficient, broadband, and flattened dispersive wave generation via dual-coupled thin-film lithium-niobate-on-insulator waveguide. Appl Sci. 2022;12(18):9130. doi: 10.3390/app12189130
  • Karim M, Al Kayed N, Dey GK, et al. Design and analysis of suspended core channel waveguide made using as2se3 glass system for mid-infrared supercontinuum generation. J Opt. 2020;23(1):Article ID 015504. doi: 10.1088/2040-8986/abcfd3
  • Zelmon DE, Small DL, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate. JOSA B. 1997;14(12):3319–3322. doi: 10.1364/JOSAB.14.003319
  • Guo H, Weng W, Liu J, et al. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica. 2020;7(9):1181–1188. doi: 10.1364/OPTICA.396542
  • Karim M, Al Kayed N, Rahman B. Broadband supercontinuum generation in the mid-infrared range ( 0.8μm−4.5μm) using low power dispersion-engineered LiNbO3 cladded silicon-rich nitride waveguide. In: 2020 IEEE Region 10 Symposium (TENSYMP). Dhaka, Bangladesh: IEEE; 2020. p. 246–249.
  • Liu X, Lee B. A fast method for nonlinear Schrodinger equation. IEEE Photonics Technol Lett. 2003;15(11):1549–1551. doi: 10.1109/LPT.2003.818679
  • Bayindir C. Compressive split-step Fourier method. TWMS J Appl Eng Math. 2015;5(2):298–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.