88
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ultra-Compact 4-Port MIMO Antenna with Defected Ground Structure and SAR Analysis for 28/38 GHz 5G Mobile Devices

&
Pages 1000-1025 | Received 10 Nov 2023, Accepted 02 May 2024, Published online: 21 May 2024

References

  • Nizar S, Anouar B, Islem BH, et al. Millimeter-wave dual-band MIMO antennas for 5G wireless applications. J Infrared Millimeter Terahertz Waves. 2023;44:297–312. doi:10.1007/s10762-023-00914-5
  • Saeidi T, Al-Gburi AJA, Karamzadeh S. A miniaturized full-ground dual-band MIMO spiral button wearable antenna for 5G and sub-6 GHz communications. Sensors. 2023;23(4):1997. doi:10.3390/s23041997.
  • Mallat NK, Ishtiaq M, Ur Rehman A, et al. Millimeter-wave in the face of 5G communication potential applications. IETE J Res. 2022;68:2522–2530. doi:10.1080/03772063.2020.1714489
  • Chen M, Li X, Zhang A, et al. Dual-polarized broadband base station antenna backed with dielectric cavity for 5G communications. IEEE Antennas Wireless Propag Lett. 2019;18(10):2051–2055. doi:10.1109/LAWP.2019.2937414
  • Ayman RS, Ahmed AI, Wael AA. Dual-band millimeter wave microstrip patch antenna with stubresonators for 28/38 GHz applications. J Phys Conf Ser. 2021;2128:012006. doi:10.1088/1742-6596/2128/1/012006
  • Elabd RH, Al-Gburi AJA. Super-compact 28/38 GHz 4-Port MIMO antenna using metamaterial-inspired EBG structure with SAR analysis for 5G cellular devices. J Infrared Milli Terahz Waves. 2024;45:35–65. doi:10.1007/s10762-023-00959-6
  • Ali A, Munir ME, Nasralla MM, et al. Design process of a compact Tri-Band MIMO antenna with wideband characteristics for sub-6 GHz, Ku-band, and millimeter-wave applications. Ain Shams Eng J. 2024;15(3):102579.
  • Khan J, Ullah S, Ali U, et al. Design of a millimeter-wave mimo antenna array for 5G communication terminals. Sensors. 2022;22(7):2768. doi:10.3390/s22072768
  • Shayea I, Tharek AR, Marwan HA, et al. Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in Malaysia. IEEE Access. 2018;6:19044–19064. doi:10.1109/ACCESS.2018.2810855
  • Ali W, Sudipta D, Hicham M, et al. Planar dual-band 27/39 GHz millimeter- wave MIMO antenna for 5G applications. Microsyst Technol. 2021;27:283–292. doi:10.1007/s00542-020-04951-1
  • Zahra H, Wahaj AA, Wael AEA, et al. A 28 GHz broadband helical inspired end-fire antenna and its MIMO configuration for 5G pattern diversity applications. Electronics. 2021;10(4):405–419. doi:10.3390/electronics10040405
  • Hussain N, Wahaj AA, Wael A, et al. Compact wideband patch antenna and its MIMO configuration for 28 GHz applications. AEU Int J Electron Commun. 2021;132:153612. doi:10.1016/j.aeue.2021.153612
  • Ibrahim AA, Wael AA. High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5G NR networks. AEU Int J Electron Commun. 2021;142:153990.
  • Jilani SF, Akram A. Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microw Antennas Propag. 2018;12(5):672–677. doi:10.1049/iet-map.2017.0467
  • Alnemr F, Mai FA, Sh AA. A compact 28/38 GHz MIMO circularly polarized antenna for 5G applications. J Infrared Millim Terahertz Waves. 2021;42(3):338–355. doi:10.1007/s10762-021-00770-1
  • Hala MM, Mohamed IA, Abdelhamed AS. A novel dual-band 28/38 GHz slotted microstrip MIMO antenna for 5G mobile applications. J Electromagn Waves Appl. 2019;33:1581–1590. doi:10.1080/09205071.2019.1617790
  • Elabd RH, Abdullah HH. A high isolation UWB MIMO Vivaldi antenna based on CSRR-NL for contemporary 5G millimeter-wave applications. J Infrared Milli Terahz Waves. 2022;43:920–941. doi:10.1007/s10762-022-00894-y
  • Elabd RH, Abdullah HH, Abdelazim M. Compact highly directive MIMO Vivaldi antenna for 5G millimeter-wave base station. J Infrared Milli Terahz Waves. 2021;42:173–194. doi:10.1007/s10762-020-00765-4
  • Kumar P, Singh AK, Kumar R, et al. Design and analysis of low profile stepped feedline with dual circular patch MIMO antenna and stub loaded partial ground plane for wireless applications. Prog Electromagn Res C. 2024;140:135–144. doi:10.2528/PIERC23121201
  • Ohyun J, Jung-Ju K, Jungmin Y, et al. Exploitation of dual polarization diversity for 5G millimeter-wave MIMO beam forming systems. IEEE Trans Antennas Propag. 2017;65(12):6646–6655. doi:10.1109/TAP.2017.2761979
  • Mneesy TS, Radwa KH, Amira IZ, et al. A novel high gain monopole antenna array for 60 GHz millimeter-wave communications. Appl Sci. 2020;10(13):4546. doi:10.3390/app10134546
  • Marzouk HM, Mohamed IA, Abdel Hamied S. Novel dualband 28/38 GHz MIMO antennas for 5G mobile applications. Prog Electromagn Res. 2019;93:103–117. doi:10.2528/PIERC19032303
  • Aliakbari H, Abdolali A, Alessandra C, et al. ANN-based design of a versatile millimetre-wave slotted patch multi-antenna configuration for 5G scenarios. IET Microw Antennas Propag. 2017;11(9):1288–1295. doi:10.1049/iet-map.2016.0987
  • Hasan MN, Bashir S, Chu S. Dual band omnidirectional millimeter wave antenna for 5G communications. J Electromagn Waves Appl. 2019;33(12):1581–1590. doi:10.1080/09205071.2019.1617790
  • Ikram M, Yifan W, Mohammad SS, et al. “Dual band circular MIMO antenna system for 5G wireless devices. In: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting; 2018, p. 247–248.
  • Omar A, Mousa H, Rajmohan IJ, et al. Dual-band MIMO coplanar waveguide-fed-slot antenna for 5G communications. Heliyon. 2021;7(4):6779. doi:10.1016/j.heliyon.2021.e06779
  • Aghoutane B, Sudipta D, Mohammed EGh, et al. A novel dual band high gain 4-port millimeter wave mimo antenna array for 28/37 GHz 5G applications. AEU Int J Electron Commun. 2022;145(4):154071.
  • Rafique U, Shobit A, Nasir N, et al. Inset-fed planar antenna array for dual-band 5G MIMO applications. Prog Electromagn Res C. 2021;112:83–98. doi:10.2528/PIERC21021302
  • Farahat AE, Khalid FAH. 28/38 GHz dual-band Yagi-Uda antenna with corrugated radiator and enhanced reflectors for 5G MIMO antenna systems. Prog Electromagn Res C. 2020;101:159–172. doi:10.2528/PIERC20022603
  • Liu P, Xiao WZ, Yan Z, et al. Patch antenna loaded with paired shorting pins and H-Shaped slot for 28/38 GHz dual-band MIMO applications. IEEE Access. 2020;8:23705–23712. doi:10.1109/ACCESS.2020.2964721
  • Farahat AE, Khlaid FH. Dual-band (28/38 GHz) MIMO antenna system for 5G mobile communications with efficient DoA estimation algorithm in noisy channels. Appl Comput Electromagn Soc. 2021;36(3):282–294. doi:10.47037/2020.ACES.J.360308
  • Marzouk HM, Ahmed MI, Shaalan AA. A Novel Dual-Band 28/38 GHz AFSL MIMO Antenna for 5G Smartphone Applications. J Phys Conf Ser. 2020;1447(1):012025. doi:10.1088/1742-6596/1447/1/012025
  • Wu W, Yuan B, Wu A. A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures. Int J Antennas Propag. 2018;2018:1–10. doi:10.1155/2018/8490740.
  • Roy S, Chakraborty U. Mutual coupling reduction in a multi-band MIMO antenna using meta-inspired decoupling network. Wireless Pers Commun. 2020;114(4):3231–3246. doi:10.1007/s11277-020-07526-5
  • Anitha R, Vinesh PV, Prakash KC, et al. A compact quad element slotted ground wideband antenna for MIMO applications. IEEE Trans Antennas Propag. 2016;64(10):4550–4553. doi:10.1109/TAP.2016.2593932
  • Kulkarni J, Desai A, Sim C-Y-D. Wideband four-port MIMO antenna array with high isolation for future wireless systems. AEU Int J Electron Commun. 2021;128:153507. doi:10.1016/j.aeue.2020.153507
  • Zou X-J, Wang G-M, Wang Y-W, et al. Mutual coupling reduction of quasi-yagi antenna array with hybrid wideband decoupling structure. AEU Int J Electron Commun. 2021;129(153553).
  • Birwal A, Singh S, Kanaujia BK, et al. MIMO/diversity antenna with neutralization line for WLAN applications. MAPAN. 2021;36:763–772. doi:10.1007/s12647-020-00427-9
  • Zhang S, Pedersen GF. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel Propag Lett. 2016;15:166–169. doi:10.1109/LAWP.2015.2435992
  • Khan MS, Capobianco A-D, Shaque MF, et al. Isolation enhancement of a wideband MIMO antenna using parasitic elements. Microw Opt Technol Lett. 2015;57(7):1677–1682. doi:10.1002/mop.29162
  • Yang M, Zhou J. A compact pattern diversity MIMO antenna with enhanced bandwidth and high-isolation characteristics for WLAN/5G/WiFi applications. Microw Opt Technol Lett. 2020;62(6):2353–2364. doi:10.1002/mop.32334
  • Ding K, Gao C, Qu D, et al. Compact broadband MIMO antenna with parasitic strip. IEEE Antennas Wirel Propag Lett. 2017;16:2349–2353. doi:10.1109/LAWP.2017.2718035
  • Sultan KS, Abdullah HH. Planar UWB MIMO-diversity antenna with dual notch characteristics. Prog Electromagn Res C. 2019;93:119–129. doi:10.2528/PIERC19031202
  • Ali WA, Ibrahim AA, Ahmed AE. Dual-band millimeter wave 2 x 2 MIMO slot antenna with low mutual coupling for 5G networks. Wirel Pers Commun. 2023;129:2959–2976. doi:10.1007/s11277-023-10267-w
  • Sghaier N, Belkadi A, Hassine IB, et al. Millimeter-Wave Dual-Band MIMO Antennas for 5G Wireless Applications. J Infrared Millim Terahertz Waves. 2023;44:297–312. doi:10.1007/s10762-023-00914-5
  • Hussain M, Awan WA, Ali EM, et al. Isolation improvement of parasitic element-loaded dual-band MIMO antenna for Mm-wave applications. Micromachines. 2022;13:1918. doi:10.3390/mi13111918
  • Bilal M, Naqvi SI, Hussain N, et al. High-isolation MIMO antenna for 5G millimeter-wave communication systems. Electronics. 2022;11:962. doi:10.3390/electronics11060962
  • Khalid M, Iffat Naqvi S, Hussain N, et al. 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics. 2020;9:71. doi:10.3390/electronics9010071
  • Elabd RH, Al-Gburi AJA. SAR assessment of miniaturized wideband MIMO antenna structure for millimeter wave 5G smartphones. Microelectron Eng. 2023;282:112098–112115. doi:10.1016/j.mee.2023.112098
  • Gómez L, Ibrahim AS. Design, analysis and simulation of microstrip antenna arrays with flexible substrate in different frequency, for use in UAV-assisted marine communications. J Mar Sci Eng. 2023;11:730. doi:10.3390/jmse11040730
  • Nikam PB, Kumar J, Sivanagaraju V, et al. Dual-band reconfigurable EBG loaded circular patch MIMO antenna using defected ground structure (DGS) and PIN diode integrated branch-lines (BLs). Measurement. 2022;195:111127–111137. doi:10.1016/j.measurement.2022.111127
  • Iqbal A, Bouazizi A. Dielectric resonator antenna with top loaded parasitic strip elements for dual-band operation. Microw Opt Technol Lett. Sep 2019;61(9):2134–2140. doi:10.1002/mop.31876
  • Lak A, Adelpour Z, Oraizi H, et al. Design and SAR assessment of three compact 5G antenna arrays. Sci Rep. 2021;11:21265. doi:10.1038/s41598-021-00679-8
  • Farooq U, Rather GM. A miniaturised Ka/V dual band millimeter wave antenna for 5G body centric network applications. Alex Eng J. 2022;61(9):8089–8096. doi:10.1016/j.aej.2022.01.044
  • Zada M, Ali Shah I, Yoo H. Integration of sub-6-GHz and mm-wave bands with a large frequency ratio for future 5G MIMO application. IEEE Access. 2021;9:11241–11251. doi:10.1109/ACCESS.2021.3051066
  • Ojaroudi Parchin N, Alibakhshikenari M, Jahanbakhsh Basherlou H, et al. MM-wave phased array Quasi-Yagi antenna for the upcoming 5G cellular communications. Appl Sci. 2019;9(5):978. doi:10.3390/app9050978
  • Khan J, Sehrai DA, Ali U. Design of dual band 5G antenna array with SAR analysis for future mobile handsets. J Electr Eng Technol. 2018;14(2):809–816. doi:10.1007/s42835-018-00059-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.