111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of electromagnetic pulse scattering for metallic object classification using machine learning

, , &
Received 25 Aug 2023, Accepted 23 May 2024, Published online: 11 Jun 2024

References

  • Wilson BA, Ledger PD, Lionheart WR. Identification of metallic objects using spectral magnetic polarizability tensor signatures: object classification. Int J Numer Methods Eng. 2022;123(9):2076–2111. doi: 10.1002/nme.v123.9
  • Dang TL, Cao T, Hoshino Y. Classification of metal objects using deep neural networks in waste processing line. Int J Innov Comput Inf Control. 2019;15(5):1901–1912.
  • Ge J, Yusa N, Fan M. Frequency component mixing of pulsed or multi-frequency eddy current testing for nonferromagnetic plate thickness measurement using a multi-gene genetic programming algorithm. NDT E Int. 2021;120:Article ID 102423. doi: 10.1016/j.ndteint.2021.102423
  • Yan B, Li Y, Liu Z, et al. Pulse-modulation eddy current imaging and evaluation of subsurface corrosion via the improved small sub-domain filtering method. NDT E Int. 2021;119:Article ID 102404. doi: 10.1016/j.ndteint.2021.102404
  • Li Y, Yan B, Li W, et al. Pulse-modulation eddy current probes for imaging of external corrosion in nonmagnetic pipes. NDT E Int. 2017;88:51–58. doi: 10.1016/j.ndteint.2017.02.009
  • Zhu P, Cheng Y, Banerjee P, et al. A novel machine learning model for eddy current testing with uncertainty. NDT E Int. 2019;101:104–112. doi: 10.1016/j.ndteint.2018.09.010
  • Bai L, Gao B, Tian S, et al. A comparative study of principal component analysis and independent component analysis in eddy current pulsed thermography data processing. Rev Sci Instrum. 2013;84(10):Article ID 104901. doi: 10.1063/1.4823521
  • Sophian A, Tian GY, Taylor D, et al. A feature extraction technique based on principal component analysis for pulsed eddy current NDT. NDT E Int. 2003;36(1):37–41. doi: 10.1016/S0963-8695(02)00069-5
  • Šimić M, Ambruš D, Bilas V. Landmine identification from pulse induction metal detector data using machine learning. IEEE Sens Lett. 2023;7(9):1–4.
  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems. Vol. 25; 2012.
  • Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.
  • Luo Q, Gao B, Woo WL, et al. Temporal and spatial deep learning network for infrared thermal defect detection. NDT E Int. 2019;108:Article ID 102164. doi: 10.1016/j.ndteint.2019.102164
  • Miorelli R, Fisher C, Kulakovskyi A, et al. Defect sizing in guided wave imaging structural health monitoring using convolutional neural networks. NDT E Int. 2021;122:Article ID 102480. doi: 10.1016/j.ndteint.2021.102480
  • Ye J, Ito S, Toyama N. Computerized ultrasonic imaging inspection: from shallow to deep learning. Sensors. 2018;18(11):3820. doi: 10.3390/s18113820
  • Salucci M, Anselmi N, Oliveri G, et al. A nonlinear kernel-based adaptive learning-by-examples method for robust NDT/NDE of conductive tubes. J Electromagn Waves Appl. 2019;33(6):669–696. doi: 10.1080/09205071.2019.1572546
  • Thomas R, Salmon B, Holloway D, et al. Machine learning classification of metallic objects using pulse induction electromagnetic data. Meas Sci Technol. 2024;35(6):Article ID 066103. doi: 10.1088/1361-6501/ad2cdd
  • Jiang W, Ren Y, Liu Y, et al. Artificial neural networks and deep learning techniques applied to radar target detection: a review. Electronics. 2022;11(1):156. doi: 10.3390/electronics11010156
  • Wang C, Wang J, Zhang X. Automatic radar waveform recognition based on time-frequency analysis and convolutional neural network. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2017. p. 2437–2441.
  • Gao J, Lu Y, Qi J, et al. A radar signal recognition system based on non-negative matrix factorization network and improved artificial bee colony algorithm. IEEE Access. 2019;7:117612–117626. doi: 10.1109/Access.6287639
  • Ding J, Chen B, Liu H, et al. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci Remote Sens Lett. 2016;13(3):364–368.
  • Dong X, Zhao Z, Wang Y, et al. FMCW radar-based hand gesture recognition using spatiotemporal deformable and context-aware convolutional 5-D feature representation. IEEE Trans Geosci Remote Sens. 2021;60:1–11.
  • Chen H, Ye W. Classification of human activity based on radar signal using 1-D convolutional neural network. IEEE Geosci Remote Sens Lett. 2019;17(7):1178–1182. doi: 10.1109/LGRS.8859
  • Arfken GB, Weber HJ. Mathematical methods for physicists. Boston: Academic Press; 2013.
  • Grami A. Introduction to digital communications. Boston: Academic Press; 2015.
  • Kelkar S, Grigsby L, Langsner J. An extension of Parseval's theorem and its use in calculating transient energy in the frequency domain. IEEE Trans Ind Electron. 1983;IE-30:42–45. doi: 10.1109/TIE.1983.356702
  • Ward SH, Hohmann GW. Electromagnetic theory for geophysical applications. In: Electromagnetic methods in applied geophysics. Vol. 1. Theory. Society of exploration geophysicists; 1988. p. 130–311.
  • Burke SK, Ibrahim M. Electrical and magnetic properties of D6ac steel. Melbourne: Defence Science and Technology Organisation; 2007.
  • Shackelford JF, Alexander W. CRC materials science and engineering handbook. Boca Raton: CRC Press; 2000.
  • The MathWorks Inc. MATLAB version: 9.11.0.1769968 (R2021b); 2021. Available from: https://www.mathworks.com
  • Harris FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE. 1978;66(1):51–83. doi: 10.1109/PROC.1978.10837
  • Bottou L. Stochastic gradient learning in neural networks. In: Proceedings of Neuro-Nımes. Vol. 91(8). Nimes; 1991. p. 12.
  • Byrd RH, Lu P, Nocedal J, et al. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput. 1995;16(5):1190–1208. doi: 10.1137/0916069
  • Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous systems; 2016. arXiv:160304467.
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014. arXiv preprint arXiv:14091556.
  • Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 248–255.
  • Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–1958.
  • Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 2818–2826.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 770–778.