447
Views
14
CrossRef citations to date
0
Altmetric
Articles

Encapsulation of solvent into halloysite nanotubes to promote self-healing ability in polymers

, , &
Pages 507-519 | Received 04 Feb 2014, Accepted 24 Mar 2014, Published online: 12 May 2014

References

  • Chou TW. Microstructural design of fiber composites. Cambridge: Cambridge University Press; 1992.10.1017/CBO9780511600272
  • Fukada Y. Bearing strength of carbon fibre/epoxy laminate with direct measurement of hole deformation. Adv. Compos. Mater. 2013;22:311–325.10.1080/09243046.2013.814752
  • Ogasawara T, Sugimoto S, Katoh H, Ishikawa T. Fatigue behavior and lifetime distribution of impact-damaged carbon fiber/toughened epoxy composites under compressive loading. Adv. Compos. Mater. 2013;22:65–78.10.1080/09243046.2013.768324
  • Mohan TP, Kanny K. Effect of nanoclay in HDPE–glass fiber composites on processing, structure, and properties. Adv. Compos. Mater. 2012;21:315–331.
  • Yuan MN, Yang YQ, Xia ZH. Modeling of push-out test for interfacial fracture toughness of fiber-reinforced composites. Adv. Compos. Mater. 2012;21:401–412.10.1080/09243046.2012.738631
  • Thostenson ET, Chou T-W. Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv. Mater. 2006;18:2837–2841.10.1002/(ISSN)1521-4095
  • Hansen CJ, Wu W, Toohey KS, Sottos NR, White SR, Lewis JA. Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 2009;21:4143–4147.10.1002/adma.v21:41
  • Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US. Self-healing materials. Adv. Mater. 2010;22:5424–5430.10.1002/adma.201003036
  • Brown EN, White SR, Sottos NR. Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci. 2004;39:1703–1710.10.1023/B:JMSC.0000016173.73733.dc
  • Williams HR, Trask RS, Bond IP. Self-healing composite sandwich structures. Smart Mater. Struct. 2007;16:1198–1207.10.1088/0964-1726/16/4/031
  • Cosentino E. Composite laminate with self-healing layer. Patent WO 2009/127852 A1. 2009.
  • Lanzara G, Yoon Y, Liu H, Peng S, Lee W-I. Carbon nanotube reservoirs for self-healing materials. Nanotechnology. 2009;20:335704.10.1088/0957-4484/20/33/335704
  • White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S. Autonomic healing of polymer composites. Nature. 2001;409:794.10.1038/35057232
  • Hsieh H-C, Yang T-J, Lee S. Crack healing in poly(methyl methacrylate) induced by co-solvent of methanol and ethanol. Polymer. 2001;42:1227–1241.10.1016/S0032-3861(00)00407-9
  • Caruso MM, Delafuente DA, Ho V, Sottos NR, Moore JS, White SR. Solvent-promoted self-healing epoxy materials. Macromolecules. 2007;40:8830–8832.
  • Timmerman JF, Hayes BS, Seferis JC. Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites. Compos. Sci. Technol. 2002;62:1249–1258.10.1016/S0266-3538(02)00063-5
  • Yasmin A, Luo JJ, Abot JL, Daniel IM. Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos. Sci. Technol. 2006;66:2415–2422.10.1016/j.compscitech.2006.03.011
  • Xu Y, Hoa SV. Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 2008;68:854–861.10.1016/j.compscitech.2007.08.013
  • Pinnavaia TJ, Beall GW, editors. Polymer-clay nanocomposites, Wiley Series in Polymer Science. Chichester: John Wiley & Sons; 2001.
  • Yung KC, Wang J, Yue TM. Fabrication of epoxy-montmorillonite hybrid composites used for printed circuit boards via in situ polymerization. Adv. Compos. Mater. 2006;15:371–384.10.1163/156855106778835203
  • Ye Y, Chen H, Wu J, Ye L. High impact strength epoxy nanocomposites with natural nanotubes. Polymer. 2007;48:6426–6433.10.1016/j.polymer.2007.08.035
  • Deng S, Zhang J, Ye L, Wu J. Toughening epoxies with halloysite nanotubes. Polymer. 2008;49:5119–5127.
  • Marney DCO, Russell LJ, Wu DY, Nguyen T, Cramm D, Rigopoulos N, Wright N, Greaves M. The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym. Degrad. Stab. 2008;93:1971–1978.10.1016/j.polymdegradsTab.2008.06.018
  • Hedicke-Höchstötter K, Lim GT, Altstädt V. Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Compos. Sci. Technol. 2009;69:330–334.10.1016/j.compscitech.2008.10.011
  • Ning N-Y, Yin Q-J, Luo F, Zhang Q, Du R, Fu Q. Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer. 2007;48:7374–7384.10.1016/j.polymer.2007.10.005
  • Du M, Guo B, Lei Y, Jia D. Thermal decomposition and oxidation ageing behaviour of polypropylene/halloysite nanotube nanocomposites. Polym. Polym. Compos. 2007;15:321–328.
  • Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym. Int. 2010;59:574–582.
  • Prashantha K, Lacrampe MF, Krawczak P. Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym. Lett. 2011;5:295–307.10.3144/expresspolymlett.2011.30
  • Zheludkevich M. Self-healing anticorrosion coatings. In: Ghosh SK, editor. Self-healing materials: fundamentals, design strategies, and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2009. p. 101–139. doi:10.1002/9783527625376.ch4.
  • Lvov YM, Shchukin DG, Mohwald H, Price RR. ACS Nano. 2008;2:814–820.10.1021/nn800259q
  • Esser-Kahn AP, Odom SA, Sottos NR, White SR, Moore JS. Triggered release from polymer capsules. Macromolecules. 2011;44:5539–5553.
  • Shchukin DG, Möhwald H. Self-repairing coatings containing active nanoreservoirs. Smart Mater. 2007;3:926–943.
  • Abdullayev E, Lvov YV. Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J. Mater. Chem. 2010;20:6681–6687.
  • Bordeepong S, Bhongsuwan D. Characterization of halloysite from Thung Yai district, Nakhon Si Thammarat province, in Southern Thailand, Songklanakarin. J. Sci. Technol. 2011;33:599–607.
  • Ramimoghadam D, Hussein MZB. The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZNO synthesized by hydrothermal method. Int. J. Mol. Sci. 2012;13:13275–13293.
  • Liufu SC, Xiao HN. Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites. Polym. Degrad. Stab. 2005;87:103–110.
  • Silverstein RM, Webster FX, Kiemle D. Spectrometric identification of organic compounds. 7th ed. Hoboken (NJ): John Wiley & Sons; 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.