254
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Mode I interlaminar fracture toughness in asymmetric interlayer in CFRP laminates

ORCID Icon, &
Pages 163-177 | Received 06 Apr 2018, Accepted 14 Sep 2019, Published online: 19 Sep 2019

References

  • Tahir MM, Wang WX, Matsubara T. Failure behavior of quasi-isotropic carbon fiber-reinforced polyamide composites under tension. Adv Composite Mater. 2018;27(5):483–497.
  • Javidrad F. An investigation into the mixed-mode delamination growth in unidirectional T800/924C laminates. Adv Composite Mater. 2016;25(5):403–421.
  • Agrawal S, Singh KK, Sarkar P. Impact damage on fibre-reinforced polymer matrix composite - A review. J Compos Mater. 2014;48:317–332.
  • Bouvet C, Rivallant S, Barrau JJ. Low velocity impact modeling in composite laminates capturing permanent indentation. Compos Sci Technol. 2012;72:1977–1988.
  • Saito H, Morita M, Kawabe K, et al. Effect of ply-thickness on impact damage morphology in CFRP laminates. J Reinf Plast Compos. 2011;30:1097–1106.
  • Bouvet C, Castanié B, Bizeul M, et al. Low velocity impact modelling in laminate composite panels with discrete interface elements. Int J Solids Struct. 2009;46(14–15):2809–2821.
  • Saito H, Kimpara I. Evaluation of impact damage mechanism of multi-axial stitched CFRP laminate. Compos Part A. 2006;37:2226–2235.
  • Baucom JN, Zikry MA. Low-velocity impact damage progression in woven E-glass composite systems. Compos Part A. 2005;36(5):658–664.
  • Ogihara S, Takeda N, Kobayashi A. Transverse cracking in CFRP cross-ply laminates with interlaminar resin layers. Adv Composite Mater. 1998;7(4):347–363.
  • Kimpara I, Kageyama K, Suzuki T, et al. Simplified and unified approach to characterization of compressive residual strength of impact-damaged CFRP laminates. Key Eng Mater. 1997;141-143:19–34.
  • Bibo GA, Hogg PJ. The role of reinforcement architecture on impact damage mechanisms and post-impact compression behaviour. J Mater Sci. 1996;31:1115–1137.
  • Ishikawa T, Sugimoto S, Matsushima M, et al. Some experimental findings in compression-after-impact (CAI) tests of CF/PEEK (APC-2) and conventional CF/epoxy flat plates. Compos Sci Technol. 1995;55:349–363.
  • Abrate S. Impact on laminated composite materials. Appl Mech Rev. 1991;44:155–190.
  • Boll DJ, Bascom WD, Weidner JC, et al. A microscopy study of impact damage of epoxy-matrix carbon-fibre composites. J Mater Sci. 1986;21:2667–2677.
  • Suemasu H. Analytical approaches to compression after impact (CAI) behavior of carbon fiber-reinforced composite materials. Adv Composite Mater. 2016;25(1):1–18.
  • May M. Measuring the rate-dependent mode I fracture toughness of composites–A review. Compos Part A. 2016;81:1–12.
  • Yashiro S, Agata T, Yoshimura A. A new approach for evaluating crack growth resistance curve of mode II delamination by doubly end-notched tension tests. Adv Composite Mater. 2018;27(2):119–133.
  • Hojo M, Ando T, Tanaka M, et al. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. Int J Fatigue. 2006;28:1154–1165.
  • Matsuda S, Hojo M, Ochiai S, et al. Effect of ionomer thickness on mode I interlaminar fracture toughness for ionomer toughened CFRP. Compos Part A. 1999;30:1311–1319.
  • Kusaka T, Kurokawa T, Hojo M, et al. Evaluation of Mode II interlaminar fracture toughness of composite laminates under impact loading. Key Eng Mater. 1998;141-143:477–500.
  • Hojo M, Kageyama K, Tanaka K. Prestandardization study on mode I interlaminar fracture toughness test for CFRP in Japan. Composites. 1995;26:243–255.
  • Tanaka K, Kageyama K, Hojo M. Prestandardization study on mode II interlaminar fracture toughness test for CFRP in japan. Composites. 1995;26:257–267.
  • Gong XJ, Hurez A, Verchery G. On the determination of delamination toughness by using multidirectional DCB specimens. Polym Test. 2010;29:658–666.
  • Solaimurugan S, Velmurugan R. Influence of in-plane fibre orientation on mode I interlaminar fracture toughness of stitched glass/polyester composites. Compos Sci Technol. 2008;68:1742–1752.
  • Pereira AB, de Morais AB, Marques AT, et al. Mode II interlaminar fracture of carbon/epoxy multidirectional laminates. Compos Sci Technol. 2004;64:1653–1659.
  • Shetty MR, Kumar KRV, Sudhir S, et al. Effect of fibre orientation on Mode-I interlaminar fracture toughness of glass epoxy composites. J Reinf Plast Compos. 2000;19:606–620.
  • Chou I. Effect of fiber orientation and moisture absorption on the interlaminar fracture toughness of CFRP laminates. Adv Composite Mater. 1998;7(4):377–394.
  • Bin Mohamed Rehan MS, Rousseau J, Fontaine S, et al. Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates. Compos Struct. 2017;161:1–7.
  • Keršiene N, Žiliukas A, Keršys A. Influence of ply orientation on mode I interlaminar fracture toughness of woven carbon and glass composites. Mechanika. 2010;82:31–36.
  • Tao J, Sun CT. Influence of ply orientation on delamination in composite laminates. J Compos Mater. 1998;32:1933–1947.
  • Vannucci P, Verchery G. A new method for generating fully isotropic laminates. Compos Struct. 2002;58:75–82.
  • Vannucci P, Verchery G. A special class of uncoupled and quasi-homogeneous laminates. Compos Sci Technol. 2001;61:1465–1473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.