392
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the combined effect of ZnO nanorods and Y2O3 nanoparticles on the microstructural and mechanical response of aluminium

ORCID Icon, , ORCID Icon, &
Pages 289-310 | Received 07 Apr 2021, Accepted 12 Oct 2021, Published online: 21 Oct 2021

References

  • Bhoi NK, Singh H, Pratap S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles – a review. J Compos Mater. 2020;54(6):813–833.
  • Malaki M, Xu W, Kasar AK, et al. Advanced metal matrix nanocomposites. Metals (Basel). 2019;9(3):330.
  • Chen CL, Lin CH. In-situ dispersed La oxides of Al6061 composites by mechanical alloying. J Alloys Compd. 2019;775:1156–1163.
  • Samal PR, Vundavilli PR, Meher A, et al. Influence of TiC on dry sliding wear and mechanical properties of in situ synthesized AA5052 metal matrix composites. J Compos Mater. 2019;53(28–30):4323–4336.
  • Topping TD, Hu T, Lavernia EJ, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2013;62:141–155.
  • Dang B, Zhang X, Chen YZ, et al. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy. Sci Rep. 2016;6(1):1–10.
  • Ma X, Zhao YF, Tian WJ, et al. A novel Al matrix composite reinforced by nano-AlN p network. Sci Rep. 2016;6:1–8.
  • Bhoi NK, Singh HPS. Synthesis and Characterization of Alumina Nanoparticles: a Case Study. J Inst Eng India Ser C. 2020;101(2):407–413.
  • Singh H, Jain PK, Bhoi N, et al. Experimental study pertaining to microwave sintering (MWS) of Al-Metal Matrix Composite - A review. Mater Sci Forum. 2018;928:150–155.
  • Tekumalla S, Farhan N, Srivatsan T, et al. Nano-ZnO Particles’ Effect in Improving the Mechanical Response of Mg-3Al-0.4Ce Alloy. Metals (Basel). 2016;6(11):276.
  • Bhoi NK, Singh H, Saurabh P. Promise of Self-lubricating Aluminum-Based Composite Material. In: Prakash C, Singh S, Davim JP, editors. Funct Smart Mater. CRC Press Taylor & Francis Group, Boca Raton; 2020. p. 65–82.
  • Gupta M, Wong WLE. Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr Mater. 2005;52(6):479–483.
  • Roy R, Agrawal D, Cheng J, et al. Full sintering of powdered-metal bodies in a microwave field. Nature. 1999;399(6737):668–670.
  • Bhoi NK, Singh H, Pratap S, et al. Microwave material processing : a clean, green, and sustainable approach. In: Kumar K, Zindani D, Davim P, editors. Sustain Eng Prod Manuf Technol. 1st. United Kingdom: Academic Press Elsevier, 3–23, 2019.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583.
  • SL K, Alok B, Akash O, et al. Spark plasma sintered Al-0.5 wt% MWCNT nanocomposite: effect of sintering pressure on the densification behavior and multi-scale mechanical properties. Diam Relat Mater. 2019; 91: 144–155.
  • Eckert J, Ms D, Okulov IV, et al. Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Mater Sci Eng A. 2017;688:20–26.
  • Mattli MR, Shakoor A, Matli PR, et al. Microstructure and Compressive Behavior of Al–Y2O3 Nanocomposites Prepared by Microwave-Assisted Mechanical Alloying. Metals (Basel). 2019;9(4):414.
  • Anvari SZ, Karimzadeh F, Enayati MH. Synthesis and characterisation of nanostructured Al–Al3V and Al–(Al3V–Al2O3) composites by powder metallurgy. Mater Sci Technol. 2018;34(2):179–190.
  • Vidyasagar CS, Karunakar DB. Improvement of mechanical properties of 2024 AA by reinforcing yttrium and processing through spark plasma sintering. Arab J Sci Eng. 2019;44(9):7859–7873.
  • Li CL, Mei QS, Li JY, et al. Hall-Petch relations and strengthening of Al-ZnO composites in view of grain size relative to interparticle spacing. Scr Mater. 2018;153:27–30.
  • Bhoi NK, Singh H, Pratap S. Synthesis and characterization of zinc oxide reinforced aluminum metal matrix composite produced by microwave sintering. J Compos Mater. 2020;54(24):3625–3636.
  • Bhoi NK, Singh H, Pratap S. A study on microwave susceptor material for hybrid heating. J Phys Conf Ser. 2019;1240:012097.
  • Liu X, Li C, Eckert J, et al. Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites. Mater Charact. 2017;133:122–132.
  • Chen Y, Tekumalla S, Guo YB, et al. Introducing Mg-4Zn-3Gd-1Ca/ZnO nanocomposite with compressive strengths matching/exceeding that of mild steel. Sci Rep. 2016;6:8–12.
  • Ahamed H, Senthilkumar V. Consolidation behavior of mechanically alloyed aluminum based nanocomposites reinforced with nanoscale Y2O3/Al2O3 particles. Mater Charact. 2011;62(12):1235–1249.
  • Bhoi NK, Singh H, Pratap S. Futuristic synthesis strategies for aluminum-based metal-matrix composites. In: Low I-M, Dong Y, editors. Compos Mater Manuf Prop Appl. 1st ed. United Kingdom: Elsevier Ltd; 2021. p. 3–23.
  • Padmavathi C, Upadhyaya A, Agrawal D. Effect of microwave and conventional heating on sintering behavior and properties of Al–Mg–Si–Cu alloy. Mater Chem Phys. 2011;130(1–2):449–457.
  • Oghbaei M, Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd. 2010;494(1–2):175–189.
  • Zhang L, Xu H, Wang Z. Mechanical properties and corrosion behavior of Al/SiC composites. J Alloys Compd. 2016;678:23–30.
  • Niste VB, Ratoi M, Tanaka H, et al. Self-lubricating Al-WS2 composites for efficient and greener tribological parts. Sci Rep. 2017;7(1):1–14.
  • Dasari BL, Morshed M, Nouri JM, et al. Mechanical properties of graphene oxide reinforced aluminium matrix composites. Compos Part B Eng. 2018;145:136–144.
  • Najarian AR, Emadi R, Hamzeh M. Fabrication of as-cast Al matrix composite reinforced by Al2O3/Al3Ni hybrid particles via in-situ reaction and evaluation of its mechanical properties. Mater Sci Eng B Solid-State Mater Adv Technol. 2018;231:57–65.
  • Li M, Gao H, Liang J, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater Charact. 2018;140:172–178.
  • Reddy Mp, Manakari V, Parande G, et al. Enhancing compressive, tensile, thermal and damping response of pure Al using BN nanoparticles. J Alloys Compd. 2018;762:398–408.
  • Liu J, Fernandez B, Rodriguez P, et al. Powder processing methodology for production of graphene oxide reinforced aluminium matrix composites. Adv Mater Process Technol. 2016;2:437–450.
  • Wojcik A, Olejnik E, Bigos A, et al. Microstructural characterization and mechanical properties of in situ cast nanocomposites Al/TiC type. J Mater Res Technol. 2020;9(6):12707–12715.
  • Kaku Y, Kumar AK, Davidson MJ, et al. Effect of deformation on properties of Al/Al-alloy ZrB2 powder metallurgy composite. J Alloys Compd. 2018;747:666–675.
  • Pérez-bustamante R, Bolaños-morales D, Bonilla-martínez J, et al. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J Alloys Compd. 2014;615:S578–S582.
  • Azadi M, Zolfaghari M, Rezanezhad S, et al. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Appl Phys A Mater Sci Process. 2018;124(5):1–13.
  • Ao M, Liu H, Dong C. The effect of La2O3 addition on intermetallic-free aluminium matrix composites reinforced with TiC and Al2O3 ceramic particles. Ceram Int. 2019;45(9):12001–12009.
  • Samal P, Mandava RK, Vundavilli PR. Dry sliding wear behavior of Al 6082 metal matrix composites reinforced with red mud particles. SN Appl Sci. 2020;2.
  • Zan YN, Zhou YT, Liu ZY, et al. Microstructure and mechanical properties of (B4C+Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages. Mater Sci Eng A. 2020;773:138840.
  • Wojewoda-Budka J, Sobczak N, Onderka B, et al. Interaction between liquid aluminum and yttria substrate: microstructure characterization and thermodynamic considerations. J Mater Sci. 2010;45(8):2042–2050.
  • Zhu H, Dong K, Huang J, et al. Reaction mechanism and mechanical properties of an aluminum-based composite fabricated in-situ from Al–SiO2 system. Mater Chem Phys. 2014;145(3):334–341.
  • Alam Syed Nasimul KL, Kumar L. Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets. Mater Sci Eng A. 2016;667:16–32.
  • Dikici B, Gavgali M, Bedir F. Synthesis of in situ TiC nanoparticles in liquid aluminum: the effect of sintering temperature. J Compos Mater. 2011;45(8):895–900.
  • Kumar L, Nasimul Alam S, Kumar Sahoo S. Influence of nanostructured Al on the mechanical properties and sliding wear behavior of Al-MWCNT composites. Mater. Sci. Eng. B Solid-State Mater. Adv. 2021;269:115162.
  • Showaiter N, Youseffi M. Compaction, sintering and mechanical properties of elemental 6061 Al powder with and without sintering aids. Mater Des. 2008;29(4):752–762.
  • Tekumalla S, Shabadi R, Yang C, et al. Strengthening due to the in-situ evolution of ß1′ Mg-Zn rich phase in a ZnO nanoparticles introduced Mg-Y alloy. Scr Mater. 2017;133:29–32.
  • Takayama S, Saito Y, Sato M, et al. Sintering behavior of metal powders involving microwave-enhanced chemical reaction. Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap. 2006;45(3A):1816–1822.
  • Shorowordi KM, Laoui T, Haseeb ASMA, et al. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. J Mater Process Technol. 2003;142(3):738–743.
  • Matli PR, Ubaid F, Shakoor RA, et al. Improved properties of Al–Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process. RSC Adv. 2017;7(55):34401–34410.
  • Kim JH, Jung JG, Baek EJ, et al. Microstructures and mechanical properties of multiphase-reinforced in situ aluminum matrix composites. Met Mater Int. 2019;25(2):353–363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.