2,719
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Multi-functional polyamide 12 (PA12)/ multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties

, ORCID Icon, , , , & show all
Pages 630-654 | Received 12 Sep 2021, Accepted 19 Apr 2022, Published online: 22 May 2022

References

  • Goh GD, Yap YL, Tan HKJ, et al. Process–structure–properties in polymer additive manufacturing via material extrusion: a review. Critl Rev Solid State Mater Sci. 2020;45(2):113–133.
  • Alcácer V, Cruz-Machado V. Scanning the industry 4.0: a literature review on technologies for manufacturing systems. Eng Sci Technol Int J. 2019;22(3):899–919.
  • Ford S, Despeisse M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod. 2016;137:1573–1587.
  • Savolainen J, Collan M. How additive manufacturing technology changes business models?– review of literature. Addit Manuf. 2020;32. DOI:10.1016/j.addma.2020.101070
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications, and challenges. Compos Part B Eng. 2018;143:172–196.
  • Vidakis N, Petousis M, Vairis A, et al. On the compressive behavior of an FDM steward platform part. J Comput Des Eng. 2017;4(4):339–346.
  • Vidakis N, Vairis A, Petousis M, et al. Fused deposition modelling parts tensile strength characterisation. Acad J Manuf Eng. 2016;14(2):87–94.
  • Vidakis N, Petousis M, Vairis A, et al. A parametric determination of bending and Charpy’s impact strength of ABS and ABS-plus fused deposition modeling specimens. Prog Addit Manuf. 2019;4(3):323–330.
  • Vairis A, Petousis M, Vidakis N, et al. On the strain rate sensitivity of ABS and ABS plus fused deposition modeling parts. J Mater Eng Perform. 2016;25(9):3558–3565.
  • Vidakis N, Petousis M, Maniadi A, et al. Sustainable additive manufacturing: mechanical response of acrylonitrile-butadiene-styrene over multiple recycling processes. Sustainability (Switzerland). 2020;12. DOI:10.3390/SU12093568
  • Valvez S, Santos P, Parente JM, et al. 3D printed continuous carbon fiber reinforced PLA composites: a short review. Procedia Struct Integr. 2020;25:394–399. (Elsevier B.V.).
  • Tzounis L, Bangeas PI, Exadaktylos A, et al. Three-dimensional printed polylactic acid (PLA) surgical retractors with sonochemically immobilized silver nanoparticles: the next generation of low-cost antimicrobial surgery equipment. Nanomaterials. 2020;10(5):985.
  • Vidakis N, Petousis M, Velidakis E, et al. Enhanced mechanical, thermal, and antimicrobial properties of additively manufactured polylactic acid with optimized nano-silica content. Nanomaterials. 2021;12(1):11.
  • Czaniková K, Špitalský Z, Krupa I, et al. Electrical and mechanical properties of ethylene-vinyl acetate-based composites. Mater Sci Forum. 2012;714:193–199. (Trans Tech Publications Ltd).
  • Carrasco PM, Tzounis L, Mompean FJ, et al. Thermoset magnetic materials based on poly(ionic liquid)s block copolymers. Macromolecules. 2013;46(5):1860–1867.
  • Ferreira I, Melo C, Neto R, et al. Study of the annealing influence on the mechanical performance of PA12 and PA12 fiber-reinforced FFF printed specimens. Rapid Prototyping J. 2020;26(10):1761–1770.
  • Vidakis N, Petousis M, Velidakis E, et al. On the strain rate sensitivity of fused filament fabrication (FFF) processed PLA, ABS, PETG, PA6, and PP thermoplastic polymers. Polymers. 2020;12(12):1–15.
  • Cai C, Tey WS, Chen J, et al. Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi-jet fusion. J Mater Process Technol. 2021;288:116882.
  • Liu Y, Zhu L, Zhou L, et al. Microstructure and mechanical properties of reinforced polyamide 12 composites prepared by laser additive manufacturing. Rapid Prototyping J. 2019;25(6):1127–1134.
  • Espera AH, Valino AD, Palaganas JO, et al. 3D printing of a robust polyamide-12-carbon black composite via selective laser sintering: thermal and electrical conductivity. Macromol Mater Eng. 2019;304. DOI:10.1002/mame.201800718.
  • Vidakis N, Petousis M, Tzounis L, et al. Sustainable additive manufacturing: mechanical response of polyamide 12 over multiple recycling processes. Materials. 2021;14:1–15.
  • Kim JH, Choe HC, Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent Mater J. 2014;33(1):32–38.
  • Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont. 2013;5(2):153–160.
  • Srinivasan N, Dhanraj G. Polyamide as a denture base material- a review. Int J Curr Adv Res. 2017;6(4):3272–3274 doi:10.24327/ijcar.2017.3274.0244.
  • Durkan R, Ayaz EA, Bagis B, et al. Comparative effects of denture cleansers on physical properties of polyamide and polymethyl methacrylate base polymers. Dent Mater J. 2013;32(3):367–375.
  • De Freitas Fernandes FS, Pereira-Cenci T, Da Silva WJ, et al. Efficacy of denture cleansers on Candida spp. biofilm formed on polyamide and polymethyl methacrylate resins. J Prosthet Dent. 2011;105(1):51–58. [Internet].
  • Daelemans L, van der Heijden S, De Baere I, et al. Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils. Compos Sci Technol [Internet]. 2015;117:244–256.
  • Heikkilä P, Harlin A. Parameter study of electrospinning of polyamide-6. Eur Polym J. 2008;44(10):3067–3079.
  • Supaphol P, Mit-Uppatham C, Nithitanakul M. Ultrafine electrospun polyamide-6 fibers: effect of emitting electrode polarity on morphology and average fiber diameter. J Polym Sci Part B. 2005;43(24):3699–3712.
  • Mit-Uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys. 2004;205(17):2327–2338.
  • De Schoenmaker B, Van Der Heijden S, De Baere I, et al. Effect of electrospun polyamide 6 nanofibers on the mechanical properties of a glass fibre/epoxy composite. Polym Test. 2013;32(8):1495–1501.
  • Rahim TNAT, Abdullah AM, Akil HM, et al. The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling. Express Polym Lett. 2017;11(12):963–982.
  • Zhang X, Fan W, Liu T. Fused deposition modeling 3D printing of polyamide-based composites and its applications. Compos Commun. 2020;21:100413. [Internet].
  • Polyakov IV, Vaganov GV, Yudin VE, et al. Investigation of properties of nanocomposite polyimide samples obtained by fused deposition modeling. Mech Compos Mater. 2018;54(1):33–40.
  • Herrero M, Peng F, Núñez Carrero KC, et al. Renewable nanocomposites for additive manufacturing using fused filament fabrication. ACS Sustain Chem Eng. 2018;6(9):12393–12402.
  • Zhu D, Ren Y, Liao G, et al. Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling. J Appl Polym Sci. 2017;134(39):1–13.
  • Dul S, Fambri L, Pegoretti A. High-performance polyamide/carbon fiber composites for fused filament fabrication: mechanical and functional performances. J Mater Eng Perform [Internet]. 2021;30(7):5066–5085.
  • Arigbabowo OK, Tate JS. Additive manufacturing of polyamide nanocomposites for electrostatic charge dissipation applications. Mater Sci Eng B Solid-State Mater Adv Technol [Internet]. 2021;271:115251.
  • Kausar A. Trends in graphene reinforced polyamide nanocomposite for functional application: a review. Polym Technol Mater [Internet]. 2019;58:917–933.
  • Chatterjee S, Nüesch FA, Chu BTT. Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites. Nanotechnology. 2011;22(27):275714. DOI:10.1088/0957-4484/22/27/275714.
  • Zheng Y, Wang R, Dong X, et al. High strength conductive polyamide 6 nanocomposites reinforced by prebuilt three-dimensional carbon nanotube networks. ACS Appl Mater Interfaces. 2018;10(33):28103–28111.
  • Fotouhi M, Jalalvand M, Wisnom MR. Notch insensitive orientation-dispersed pseudo-ductile thin-ply carbon/glass hybrid laminates. Compos Part A Appl Sci Manuf. 2018;110:29–44. [Internet].
  • Doagou-Rad S, Islam A, Jensen JS. Influence of processing conditions on the mechanical behavior of MWCNT reinforced thermoplastic nanocomposites. Procedia CIRP (Elsevier B.V.). 2017;66:131–136.
  • Jouni M, Djurado D, Massardier V, et al. A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers. Poly Int. 2017;66(9):1237–1251.
  • Raj A, Samuel C, Malladi N, et al. Enhanced (thermo)mechanical properties in biobased poly(l - lactide)/poly(amide-12) blends using high shear extrusion processing without compatibilizers. Polym Eng Sci. 2020;60(8):1902–1916.
  • Charroux B, Daian F, Royet J. Drosophila aversive behavior toward Erwinia carotovora carotovora is mediated by bitter neurons and Leukokinin. iScience. 2020;23(6):101152.
  • Narayan RJ, Berry CJ, Brigmon RL. Structural and biological properties of carbon nanotube composite films. Mater Sci Eng B: Solid-State Mater Adv Technol. 2005;123(2):123–129.
  • Alizadeh A, Razmjou A, Ghaedi M, et al. Nanoporous solid-state membranes modified with multi-wall carbon nanotubes with anti-biofouling property. Int J Nanomedicine. 2019;14:1669–1685.
  • Liu J, Wu D, Zhu N, et al. Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials. Trends Food Sci Technol. 2021;109:413–434.
  • Azizi-Lalabadi M, Hashemi H, Feng J, et al. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci [Internet]. 2020;284:102250.
  • Yang C, Mamouni J, Tang Y, et al. Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir. 2010;26(20):16013–16019.
  • Nepal D, Balasubramanian S, Simonian AL, et al. Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett. 2008;8(7):1896–1901.
  • Dizaj SM, Mennati A, Jafari S, et al. Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull. 2015;5(1):19–23.
  • Kang S, Pinault M, Pfefferle LD, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 2007;23(17):8670–8673.
  • Chaparro-Rico BDM, Martinello K, Fucile S, et al. User-Tailored Orthosis Design for 3D Printing with PLACTIVE: a Quick Methodology. Crystals. 2021;11(5):561.
  • Lewis JS, Barani Z, Magana AS, et al. Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater Res Express. 2019;6(8): 085325. DOI:10.1088/2053-1591/ab2215.
  • Mohd Radzuan NA, Sulong AB, Sahari J. A review of electrical conductivity models for conductive polymer composite. Int J Hydrogen Energy [Internet]. 2017;42(14):9262–9273.
  • Yang Z, Peng H, Wang W, et al. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci. 2010;116:2658–2667.
  • Liu H, Li Q, Zhang S, et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J Mater Chem C. 2018;6(45):12121–12141.
  • Chen J, Zhu Y, Guo Z, et al. Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng Sci. 2020;12:13–22.
  • Jianwen C, Yutian Z, Jinrui H, et al. Advances in responsively conductive polymer composites and sensing applications. Polymer Rev. 2021;61(1):157–193.
  • Li J, Wang Y, Yue TN, et al. Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers. Compos Sci Technol [Internet]. 2021;206:108681.
  • Cai JH, Tang XH, Chen XD, et al. Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos Part A Appl Sci Manuf [Internet]. 2021;140:106188.
  • Wang M, Tang XH, Cai JH, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon N Y [Internet]. 2021;177:377–402.
  • Cai JH, Li J, Chen XD, et al. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chem Eng J [Internet]. 2020;393:124805.
  • Hong R, Zhao Z, Leng J, et al. Two-step approach based on selective laser sintering for high performance carbon black/ polyamide 12 composite with 3D segregated conductive network. Compos Part B Eng [Internet]. 2019;176:107214.
  • Kazemi Y, Kakroodi AR, Mark LH, et al. Effects of polymer-filler interactions on controlling the conductive network formation in polyamide 6/multi-Walled carbon nanotube composites. Polymer (Guildf). 2019;178:121684. DOI:10.1016/j.polymer.2019.121684.
  • Radoičić M, Ćirić-Marjanović G, Miličević D, et al. Fine-tuning of conductive and dielectric properties of polypyrrole/TiO2 nanocomposite-coated polyamide fabric. Compos Interfaces [Internet]. 2021;28(8):795–808.
  • Socher R, Krause B, Hermasch S, et al. Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Compos Sci Technol [Internet]. 2011;71(8):1053–1059.
  • Dorigato A, Pegoretti A. Novel electroactive polyamide 12 based nanocomposites filled with reduced graphene oxide. Polym Eng Sci. 2019;59(1):198–205.
  • Barjasteh E, Sutanto C, Nepal D. Conductive polyamide-graphene composite fabric via interface engineering. Langmuir. 2019;35(6):2261–2269.
  • Kim MJ, Cruz MA, Ye S, et al. One-step electrodeposition of copper on conductive 3D printed objects. Addit Manuf. 2019;27:318–326. [Internet].
  • Roy S, Bilal Qureshi M, Asif S, et al. A model for 3D-printed microstrip transmission lines using conductive electrifi filament. 2017 IEEE Antennas Propag Soc Int Symp Proc. January 2017;2017: 1099–1100.
  • Mitra D, Roy S, Striker R, et al. Conductive electrifi and nonconductive ninjaflex filaments based flexible microstrip antenna for changing conformal surface applications. Electron. 2021;10(7):821.
  • Mitra D, Striker R, Cleveland J, et al. A 3D printed microstrip patch antenna using electrifi filament for in-space manufacturing. 2021 United States Natl Comm URSI Natl Radio Sci Meet Usn NRSM 2021 - Proc 2021; 216–217.
  • Ibrahim M, Mogan Y, Shafiqah Jamry SN, et al. Resistivity study on conductive composite filament for freeform fabrication of functionality embedded products. ARPN J Eng Appl Sci. 2016;11:6525–6530.
  • Flowers PF, Reyes C, Ye S, et al. 3D printing electronic components and circuits with conductive thermoplastic filament. Addit Manuf. 2017;18:156–163. [Internet].
  • Florian Machui DI. Formulation of semiconductor solutions for organic photovoltaic devices formulierung von halbleiterlösungen für die organische photovoltaik. Nuremberg: Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg; 2014.
  • Kulkarni A, Mukhopadhyay N, Bhattacharyya AR, et al. Dispersion of non-covalently modified graphene in aqueous medium: a molecular dynamics simulation approach. RSC Adv. 2017;7(8):4460–4467.
  • Linkov I, Steevens J. Nanomaterials: risks and benefits. Dordrecht: Springer; 2009.
  • Haq MIU, Raina A, Ghazali MJ, et al. Potential of 3D printing technologies in developing applications of polymeric nanocomposites. In Jena H, Katiyar JK, Patnaik A editors. Tribology of polymer and polymer composites for industry 4.0. Composites science and technology. Springer: Singapore. 2021. 193–210. DOI:10.1007/978-981-16-3903-6_10.
  • Clarissa WHY, Chia CH, Zakaria S, et al. Recent advancement in 3-D printing: nanocomposites with added functionality. Prog Addit Manuf. 2021. [Internet]. DOI:10.1007/s40964-021-00232-z.
  • Vidakis N, Petousis M, Kechagias J. Parameter effects and process modeling of Polyamide 12 3D-printed parts strength and toughness. Mater Manuf Process. 2022;1–12. DOI:10.1080/10426914.2022.2030871
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79.
  • Tzounis L, Kirsten M, Simon F, et al. The interphase microstructure and electrical properties of glass fibers covalently and non-covalently bonded with multiwall carbon nanotubes. Carbon. 2014;73:310–324.
  • Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8(4):235–246. PMID: 23552117.
  • Tzounis L, Petousis M, Liebscher M, et al. Three-Dimensional (3D) Conductive Network of CNT-Modified short jute fiber-reinforced natural rubber: hierarchical CNT-enabled thermoelectric and electrically conductive composite interfaces. Materials. 2020;13(11):2668.
  • Vidakis N, Petousis M, Tzounis L, et al. Polyamide 12/multiwalled carbon nanotube and carbon black nanocomposites manufactured by 3D printing fused filament fabrication: a comparison of the electrical, thermoelectric, and mechanical properties. C. 2021;7:38.
  • Tzounis L, Petousis M, Grammatikos S, et al. 3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites: a novel approach towards the fabrication of flexible and stretchable organic thermoelectrics. Materials. 2020;13(12):2879.