185
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Industrially and biomedically important guargum based nano composites and their methods of synthesis: a review

ORCID Icon, &
Pages 437-459 | Received 31 Dec 2021, Accepted 18 Jul 2022, Published online: 05 Sep 2022

References

  • Nasuha N, Ismail S, Hameed BH. Activated electric arc furnace slag as an effective and reusable Fenton-like catalyst for the photodegradation of methylene blue and acid blue 29. J Environ Manage. 2017;196:323–329.
  • Pava-Gómez B, Vargas-Ramírez X, Díaz-Uribe C. Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films. J Photochem Photobiol A Chem. 2018;360:13–25.
  • Majumder D, Chakraborty I, Mandal K, et al. Facet-dependent photodegradation of methylene blue using pristine CeO2 nanostructures. ACS omega. 2019;4:4243–4251.
  • Manatunga DC, de Silva RM, de Silva KMN, et al. Natural polysaccharides leading to super adsorbent hydroxyapatite nanoparticles for the removal of heavy metals and dyes from aqueous solutions. RSC Adv. 2016;6(107):105618–105630.
  • Kumar R, Sharma RK, Singh AP. Cellulose based grafted biosorbents-Journey from lignocellulose biomass to toxic metal ions sorption applications-A review. J Mol Liq. 2017;232:62–93.
  • Chaudhary S, Garg T, Murthy RSR, et al. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target. 2014;22(10):871–882.
  • Saraogi GK, Sharma B, Joshi B, et al. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target. 2011;19(3):219–227.
  • Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci. 2002;91(1):18–31.
  • Krishnaiah YSR, Raju PV, Kumar BD, et al. Development of colon targeted drug delivery systems for mebendazole. J Control Release. 2001;77(1–2):87–95.
  • Ma Z, Deng L, Fan G, et al. Hydrothermal synthesis of p-C3N4/f-BiOBr composites with highly efficient degradation of methylene blue and tetracycline. Spectrochim Acta Part A Mol Biomol Spectrosc. 2019;214:103–110.
  • Kumar V, Kaith BS, Jindal R. Synthesis of hybrid ion exchanger for rhodamine B dye removal: equilibrium, kinetic and thermodynamic studies. Ind Eng Chem Res. 2016;55(39):10492–10499.
  • Li X, Jin X, Zhao N, et al. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresour Technol. 2017;228:322–329.
  • Anushree C, Philip J. Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids Surf A Physicochem Eng Asp. 2019;567:193–204.
  • Hernández-Montoya V, Pérez-Cruz MA, Mendoza-Castillo DI, et al. Competitive adsorption of dyes and heavy metals on zeolitic structures. J Environ Manage. 2013;116:213–221.
  • Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul. 2007;1(1):37–51.
  • Pal S, Patra AS, Ghorai S, et al. Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes. Bioresour Technol. 2015;191:291–299.
  • Zhu Z, Bai Y-L, Zhang L, et al. Two nanocage anionic metal–organic frameworks with rht topology and {[M (H 2 O) 6] 6} 12+ charge aggregation for rapid and selective adsorption of cationic dyes. Chem Commun. 2014;50:14674–14677.
  • Sarkar AK, Saha A, Panda AB, et al. pH Triggered superior selective adsorption and separation of both cationic and anionic dyes and photocatalytic activity on a fully exfoliated titanate layer–natural polymer based nanocomposite. Chem Commun. 2015;51(89):16057–16060.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–1037.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):1–33.
  • Dong P, Cheng X, Jin Z, et al. The green synthesis of Ag-loaded photocatalyst via DBD cold plasma assisted deposition of Ag nanoparticles on N-doped TiO2 nanotubes. J Photochem Photobiol A Chem. 2019;382:111971.
  • Rajam AM, Jithendra P, Mandal AB, et al. Evaluation of in vitro macrophage response and in vivo host response to growth factors incorporated chitosan nanoparticle impregnated collagen-chitosan scaffold. J Biomed Nanotechnol. 2014;10:508–518.
  • Wang Z, Wu Y, Zeng X, et al. Antitumor efficiency of D-α-tocopheryl polyethylene glycol 1000 succinate-b-poly (ε-caprolactone-ran-lactide) nanoparticle-based delivery of docetaxel in mice bearing cervical cancer. J Biomed Nanotechnol. 2014;10:1509–1519.
  • Boukhalfa N, Boutahala M, Djebri N, et al. Maghemite/alginate/functionalized multiwalled carbon nanotubes beads for methylene blue removal: adsorption and desorption studies. J Mol Liq. 2019;275:431–440.
  • Lin D, Feng S, Huang H, et al. Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening. J Biomed Nanotechnol. 2014;10(3):478–484.
  • Gibbs BF, Yasinska IM, Calzolai L, et al. Highly specific targeting of human leukocytes using gold nanoparticle-based biologically active conjugates. J Biomed Nanotechnol. 2014;10(7):1259–1266.
  • Ma L, Zou X, Chen W. A new X-ray activated nanoparticle photosensitizer for cancer treatment. J Biomed Nanotechnol. 2014;10(8):1501–1508.
  • de Patricio BFC, de Albernaz MS, Sarcinelli MA, et al. Development of novel nanoparticle for bone cancer. J Biomed Nanotechnol. 2014;10(7):1242–1248.
  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–327.
  • Pandey S, Mishra SB. Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr Polym. 2014;113:525–531.
  • Khan TA, Nazir M, Ali I, et al. Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arab J Chem. 2017;10:S2388–S2398.
  • Krishnaiah YSR, Karthikeyan RS, Satyanarayana V. A three-layer guar gum matrix tablet for oral controlled delivery of highly soluble metoprolol tartrate. Int J Pharm. 2002;241(2):353–366.
  • Toti US, Aminabhavi TM. Modified guar gum matrix tablet for controlled release of diltiazem hydrochloride. J Control Release. 2004;95(3):567–577.
  • Soppirnath KS, Aminabhavi TM. Water transport and drug release study from cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur J Pharm Biopharm. 2002;53(1):87–98.
  • George A, Shah PA, Shrivastav PS. Guar gum: versatile natural polymer for drug delivery applications. Eur Polym J. 2019;112:722–735.
  • Prabaharan M. Prospective of guar gum and its derivatives as controlled drug delivery systems. Int J Biol Macromol. 2011;49(2):117–124.
  • Saya L, Malik V, Singh A, et al. Guar gum based nanocomposites: role in water purification through efficient removal of dyes and metal ions. Carbohydr Polym. 2021;261:117851.
  • Mukherjee S, Mukhopadhyay S, Bin ZMZ, et al. Application of guar gum for the removal of dissolved lead from wastewater. Ind Crops Prod. 2018;111:261–269.
  • Adimule V, Kerur SS, Chinnam S, et al. Guar gum and its nanocomposites as prospective materials for miscellaneous applications: a short review. Top Catal. 2022; 65:1–14.
  • Thakur S, Sharma B, Verma A, et al. Recent approaches in guar gum hydrogel synthesis for water purification. Int J Polym Anal Charact. 2018;23(7):621–632.
  • Praphakar RA, Jeyaraj M, Mehnath S, et al. A pH-sensitive guar gum-grafted-lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells. J Mater Chem B. 2018;6:1519–1530.
  • Dinari M, Shirani MA, Maleki MH, et al. Green cross-linked bionanocomposite of magnetic layered double hydroxide/guar gum polymer as an efficient adsorbent of Cr (VI) from aqueous solution. Carbohydr Polym. 2020;236:116070.
  • Sinha VR, Mittal BR, Bhutani KK, et al. Colonic drug delivery of 5-fluorouracil: an in vitro evaluation. Int J Pharm. 2004;269(1):101–108.
  • Moretton MA, Chiappetta DA, Andrade F, et al. Hydrolyzed galactomannan-modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages. J Biomed Nanotechnol. 2013;9(6):1076–1087.
  • Sharma G, Sharma S, Kumar A, et al. Guar gum and its composites as potential materials for diverse applications: a review. Carbohydr Polym. 2018;199:534–545.
  • Vanaamudan A, Sadhu M, Pamidimukkala P. Chitosan-Guar gum blend silver nanoparticle bionanocomposite with potential for catalytic degradation of dyes and catalytic reduction of nitrophenol. J Mol Liq. 2018;271:202–208.
  • Hamza MF, Fouda A, Elwakeel KZ, et al. Phosphorylation of guar gum/magnetite/chitosan nanocomposites for uranium (VI) sorption and antibacterial applications. Molecules. 2021;26(7):1920.
  • Patel JJ, Karve M, Patel NK. Guar gum: a versatile material for pharmaceutical industries. Int J Pharm Pharm Sci. 2014;6:13–19.
  • Dinari M, Tabatabaeian R. Ultra-fast and highly efficient removal of cadmium ions by magnetic layered double hydroxide/guargum bionanocomposites. Carbohydr Polym. 2018;192:317–326.
  • Sharma S, Kaur J, Sharma G, et al. Preparation and characterization of pH-responsive guar gum microspheres. Int J Biol Macromol. 2013;62:636–641.
  • Fiszman S, Varela P. The role of gums in satiety/satiation. A review. Food Hydrocoll. 2013;32(1):147–154.
  • Sarmah JK, Mahanta R, Bhattacharjee SK, et al. Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles. Int J Biol Macromol. 2011;49(3):390–396.
  • Shukla RK, Tiwari A. Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr Polym. 2012;88(2):399–416.
  • Thombare N, Jha U, Mishra S, et al. Guar gum as a promising starting material for diverse applications: a review. Int J Biol Macromol. 2016;88:361–372.
  • Chaurasia M, Chourasia MK, Jain NK, et al. Cross-linked guar gum microspheres: a viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. Aaps Pharmscitech. 2006;7(3):E143–E151.
  • Al-Saidan SM, Krishnaiah YSR, Satyanarayana V, et al. Pharmacokinetic evaluation of guar gum-based three-layer matrix tablets for oral controlled delivery of highly soluble metoprolol tartrate as a model drug. Eur J Pharm Biopharm. 2004;58(3):697–703.
  • Misra AN, Baweja JM. Modified guar gum as hydrophilic matrix for controlled release tablets. Indian Drugs. 1997;34:216–223.
  • Labhasetwar V, Song C, Humphrey W, et al. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci. 1998;87(10):1229–1234.
  • Patra AS, Ghorai S, Sarkar D, et al. Anionically functionalized guar gum embedded with silica nanoparticles: an efficient nanocomposite adsorbent for rapid adsorptive removal of toxic cationic dyes and metal ions. Bioresour Technol. 2017;225:367–376.
  • Ahmad R, Mirza A. Synthesis of Guar gum/bentonite a novel bionanocomposite: isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye. J Mol Liq. 2018;249:805–814.
  • Ahmad R, Kumar R. Adsorption studies of hazardous malachite green onto treated ginger waste. J Environ Manage. 2010;91(4):1032–1038.
  • Oladoja NA, Akinlabi AK. Congo red biosorption on palm kernel seed coat. Ind Eng Chem Res. 2009;48(13):6188–6196.
  • Rocher V, Siaugue J-M, Cabuil V, et al. Removal of organic dyes by magnetic alginate beads. Water Res. 2008;42(4–5):1290–1298.
  • Crini G, Badot P-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci. 2008;33(4):399–447.
  • Parker HL, Hunt AJ, Budarin VL, et al. The importance of being porous: polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Adv. 2012;2(24):8992–8997.
  • Kabiri K, Omidian H, Zohuriaan-Mehr MJ, et al. Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos. 2011;32(2):277–289.
  • Travlou NA, Kyzas GZ, Lazaridis NK, et al. Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir. 2013;29(5):1657–1668.
  • Pal S, Patra AS, Ghorai S, et al. Modified guar gum/SiO 2: development and application of a novel hybrid nanocomposite as a flocculant for the treatment of wastewater. Environ Sci Water Res Technol. 2015;1(1):84–95.
  • Rezk MY, Zeitoun M, El-Shazly AN, et al. Robust photoactive nanoadsorbents with antibacterial activity for the removal of dyes. J Hazard Mater. 2019;378:120679.
  • Sahoo JK, Kumar A, Rath J, et al. Guar gum-coated iron oxide nanocomposite as an efficient adsorbent for Congo red dye. 2017
  • Taheri A, Razavi SMA. Fabrication of cress seed gum nanoparticles, an anionic polysaccharide, using desolvation technique: an optimization study. Bionanoscience. 2015;5:104–116.
  • Becer CR, Babiuch K, Pilz D, et al. Clicking pentafluorostyrene copolymers: synthesis, nanoprecipitation, and glycosylation. Macromolecules. 2009;42(7):2387–2394.
  • Dodi G, Pala A, Barbu E, et al. Carboxymethyl guar gum nanoparticles for drug delivery applications: preparation and preliminary in-vitro investigations. Mater Sci Eng C. 2016;63:628–636.
  • Soumya RS, Ghosh S, Abraham ET. Preparation and characterization of guar gum nanoparticles. Int J Biol Macromol. 2010;46(2):267–269.
  • Kaur M, Malik B, Garg T, et al. Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv. 2015;22(3):328–334.
  • Soumya RS, Vineetha VP, Reshma PL, et al. Preparation and characterization of selenium incorporated guar gum nanoparticle and its interaction with H9c2 cells. PLoS One. 2013;8(9):e74411.
  • Malik P, Srivastava M, Verma R, et al. Nanostructured SnO2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine. Mater Sci Eng C. 2016;58:432–441.
  • Gupta AP, Verma DK. Preparation and characterization of carboxymethyl guar gum nanoparticles. Int J Biol Macromol. 2014;68:247–250.
  • Hasan I, Khan RA, Alharbi W, et al. Synthesis, characterization and photo-catalytic activity of guar-gum-g-aliginate@ silver bionanocomposite material. RSC Adv. 2020;10:7898–7911.
  • Patra AS, Ghorai S, Ghosh S, et al. Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles. J Hazard Mater. 2016;301:127–136.
  • Pathania D, Katwal R, Sharma G, et al. Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol. 2016;87:366–374.
  • Balachandramohan J, Sivasankar T. Ultrasound assisted synthesis of guar gum-zero valent iron nanocomposites as a novel catalyst for the treatment of pollutants. Carbohydr Polym. 2018;199:41–50.
  • Jeong Y, Cho C, Kim S, et al. Preparation of poly (DL‐lactide‐co‐glycolide) nanoparticles without surfactant. J Appl Polym Sci. 2001;80(12):2228–2236.
  • Kostag M, Köhler S, Liebert T, et al. Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp. 2010;294 (2):96–106.
  • Nagavarma BVN, Yadav HKS, Ayaz A, et al. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res. 2012;5:16–23.
  • He X, Ma J, Mercado AE, et al. Cytotoxicity of paclitaxel in biodegradable self-assembled core-shell poly (lactide-co-glycolide ethylene oxide fumarate) nanoparticles. Pharm Res. 2008;25(7):1552–1562.
  • Zhang Z, Lee SH, Gan CW, et al. In vitro and in vivo investigation on PLA–TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res. 2008;25(8):1925–1935.
  • Sheikh FA, Barakat NAM, Kanjwal MA, et al. Novel self-assembled amphiphilic poly (ε-caprolactone)-grafted-poly (vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci Mater Med. 2009;20(3):821–831.
  • Errico C, Bartoli C, Chiellini F, et al. Poly (hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J Biomed Biotechnol. 2009;2009:1–10.
  • Chronopoulou L, Fratoddi I, Palocci C, et al. Osmosis based method drives the self-assembly of polymeric chains into micro-and nanostructures. Langmuir. 2009;25(19):11940–11946.
  • Das A, Abdullah F, Kundu S, et al. Synthesis of guar gum propionate nanoparticles for antimicrobial applications. Mater Today Proc. 2018;5(3):9683–9689.
  • Ghosh SK, Abdullah F, Mukherjee A. Fabrication and fluorescent labeling of guar gum nanoparticles in a surfactant free aqueous environment. Mater Sci Eng C. 2015;46:521–529.
  • Kundu S, Das A, Basu A, et al. Guar gum benzoate nanoparticle reinforced gelatin films for enhanced thermal insulation, mechanical and antimicrobial properties. Carbohydr Polym. 2017;170:89–98.
  • Na K, Kim Y-E, Lee K-Y. Preparation of nanoparticles in drug delivery system using guar derivatives and dialysis method. J Microbiol Biotechnol. 1999;9:50–55.
  • Bang JH, Suslick KS. Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater. 2010;22(10):1039–1059.
  • Leong T, Ashokkumar M, Kentish S. The fundamentals of power ultrasound-a review. 2011
  • Avila-Alfaro JA, Sánchez-Valdes S, Ramos-deValle LF, et al. Ultrasound irradiation coating of silver nanoparticle on ABS sheet surface. J Inorg Organomet Polym Mater. 2013;23(3):673–683.
  • Karakus S, Ilgar M, Kahyaoglu IM, et al. Influence of ultrasound irradiation on the intrinsic viscosity of guar gum–PEG/rosin glycerol ester nanoparticles. Int J Biol Macromol. 2019;141:1118–1127.
  • Chandel D, Uppal S, Mehta SK, et al. Preparation and characterization of celecoxib entrapped guar gum nanoparticles targeted for oral drug delivery against colon cancer: an in-vitro study. J Drug Delivery Ther. 2020;10(2–s):14–21.
  • Gharsallaoui A, Roudaut G, Chambin O, et al. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int. 2007;40(9):1107–1121.
  • Gibbs Inteaz Alli F, Mulligan CN, Bernard SK. Encapsulation in the food industry: a review. Int J Food Sci Nutr. 1999;50(3):213–224.
  • Madene A, Jacquot M, Scher J, et al. Flavour encapsulation and controlled release–a review. Int J Food Sci Technol. 2006;41(1):1–21.
  • Gouin S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol. 2004;15(7–8):330–347.
  • Watanabe Y, Fang X, Minemoto Y, et al. Suppressive effect of saturated acyl L-ascorbate on the oxidation of linoleic acid encapsulated with maltodextrin or gum arabic by spray-drying. J Agric Food Chem. 2002;50:3984–3987.
  • Anal AK, Stevens WF. Chitosan–alginate multilayer beads for controlled release of ampicillin. Int J Pharm. 2005;290(1–2):45–54.
  • Kaur R, Garg T, Malik B, et al. Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs. Drug Deliv. 2016;23(3):872–877.
  • Timilsena YP, Akanbi TO, Khalid N, et al. Complex coacervation: principles, mechanisms and applications in microencapsulation. Int J Biol Macromol. 2019;121:1276–1286.
  • Lin W, Coombes A, Davies M, et al. Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. J Drug Target. 1993;1(3):237–243.
  • Joshi S, Singh V. Gelatin–rosin gum complex nanoparticles: preparation, characterization and colon targeted delivery of 5-fluorouracil. Chem Pap. 2020;74(12):4241–4252.
  • Hedayati R, Jahanshahi M, Attar H. Fabrication and characterization of albumin‐acacia nanoparticles based on complex coacervation as potent nanocarrier. J Chem Technol Biotechnol. 2012;87(10):1401–1408.
  • Shahgholian N, Rajabzadeh G. Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate. Food Hydrocoll. 2016;59:17–25.
  • Sarmah JK, Bhattacharjee SK, Mahanta R, et al. Preparation of cross-linked guar gum nanospheres containing tamoxifen citrate by single step emulsion in situ polymer cross-linking method. J Incl Phenom Macrocyclic Chem. 2009;65(3–4):329.
  • Vijayan V, Purushothaman M, Raj JA. Synthesis and characterization of PEGylated guar gum based nanoparticles: new approach in novel drug delivery system. Pharmacol Toxicol Biomed Rep. 2016;2.
  • Barreras-Urbina CG, Ramírez-Wong B, López-Ahumada GA, et al. Nano-and micro-particles by nanoprecipitation: possible application in the food and agricultural industries. Int J Food Prop. 2016;19(9):1912–1923.
  • Quintanar-Guerrero D, Allémann E, Doelker E, et al. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res. 1998;15(7):1056–1062.
  • Zhang G, Niu A, Peng S, et al. Formation of novel polymeric nanoparticles. Acc Chem Res. 2001;34(3):249–256.
  • Bilati U, Allémann E, Doelker E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. Aaps Pharmscitech. 2005;6(4):E594–E604.
  • Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. Aaps Pharmscitech. 2014;15(6):1527–1534.
  • Haggag YA, Faheem AM. Evaluation of nano spray drying as a method for drying and formulation of therapeutic peptides and proteins. Front Pharmacol. 2015;6:6.
  • Sarmah JK, Mahanta R, Bhattacharjee SK, et al. In-vitro cytotoxicity analysis of Tamoxifen citrate loaded cross-linked guar gum nanoparticles on jurkat (human T-cell leukemia) cell line. J Drug Delivery Ther. 2012;2: 67-71.
  • Sarmah JK, Bhattacharjee SK, Roy S, et al. Biodegradable guar gum nanoparticles as carrier for tamoxifen citrate in treatment of breast cancer. J Biomater Nanobiotechnol. 2014;5(4):220.
  • Hira I, Kumar A, Kumari R, et al. Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas. Mater Sci Eng C. 2018;90:494–503.
  • Ray L, Karthik R, Srivastava V, et al. Efficient antileishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles. Drug Deliv Transl Res. 2021;11(1):118–130.
  • Goyal AK, Garg T, Rath G, et al. Development and characterization of nanoembedded microparticles for pulmonary delivery of antitubercular drugs against experimental tuberculosis. Mol Pharm. 2015;12(11):3839–3850.
  • Goyal AK, Garg T, Rath G, et al. Chemotherapeutic evaluation of guar gum coated chitosan nanoparticle against experimental tuberculosis. J Biomed Nanotechnol. 2016;12(3):450–463.
  • Varma VNSK, Shivakumar HG, Balamuralidhara V, et al. Development of pH sensitive nanoparticles for intestinal drug delivery using chemically modified guar gum Co-polymer. Iran J Pharm Res IJPR. 2016;15:83.
  • Sharma M, Malik R, Verma A, et al. Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer. J Biomed Nanotechnol. 2013;9(1):96–106.
  • Gupta VK, Agarwal S, Ahmad R, et al. Sequestration of toxic Congo red dye from aqueous solution using ecofriendly guar gum/activated carbon nanocomposite. Int J Biol Macromol. 2020;158:1310–1318.
  • Yan L, Chang PR, Zheng P, et al. Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes. Carbohydr Polym. 2012;87(3):1919–1924.
  • Ahmad R, Hasan I. L-methionine montmorillonite encapsulated guar gum-g-polyacrylonitrile copolymer hybrid nanocomposite for removal of heavy metals. Groundw Sustain Dev. 2017;5:75–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.