57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Photocatalytic activities of the ZnO:CuO nanocomposites synthesized by microwave-assisted hydrothermal under UV-Vis irradiation

, , , , , , , , & show all
Received 18 Feb 2024, Accepted 08 Jun 2024, Published online: 23 Jun 2024

References

  • Liu G, Han L, Wang J, et al. Continuous near-complete photocatalytic degradation of toluene by V/N-doped TiO2 loaded on honeycomb ceramics under UV irradiation. J Mater Sci Technol. 2024;174:188–194. doi: 10.1016/j.jmst.2023.08.012
  • Ranjbari A, Kim J, Yu J, et al. Effect of oxygen vacancy modification of ZnO on photocatalytic degradation of methyl orange: a kinetic study. CatalToday. 2024;427:114413. doi: 10.1016/j.cattod.2023.114413
  • Li M, Zhang R, Zou Z, et al. Optimizing physico-chemical properties of hierarchical ZnO/TiO2 nano-film by the novel heating method for photocatalytic degradation of antibiotics and dye. Chemosphere. 2024;346(140392):045–6535. doi: 10.1016/j.chemosphere.2023.140392
  • Ullah S, Shahid W, Samiah Shahid MIK, et al. Advancing photocatalysis: innovative approaches using novel V2O5/ZnO nanocomposites for efficient photocatalytic degradation of tubantin red. J Saudi Chem Soc. 2023;27(6):101766. doi: 10.1016/j.jscs.2023.101766
  • Mohammadi Z, Abbasi-Asl H, Mehdi Sabzehmeidani M, et al. Interface engineering of a magnetic 2D-C3N4/Fe2O3/NiFe-LDH heterostructure for efficient photocatalytic degradation of methylene blue and rhodamine B dyes under visible light. App Clay Sci. 2023;246:107182. doi: 10.1016/j.clay.2023.107182
  • Zhang Y, Zhang Z, Zhang Y, et al. Shape-dependent synthesis and photocatalytic degradation by Cu2O nanocrystals: kinetics and photocatalytic mechanism. J Colloid Interface Sci. 2023;651:117–127. doi: 10.1016/j.jcis.2023.07.196
  • Song C. Enhancing photocatalytic degradation of hydrolyzed polyacrylamide in oilfield wastewater using BiVO4/TiO2 heterostructure nano-photocatalyst under visible light irradiation. Int J Electrochem Sci. 2023;18(12):100363. doi: 10.1016/j.ijoes.2023.100363
  • Sharumathi S, Pirthiusha P, Senthil Kumar D, et al. Copper oxide-anchored ZnO nanoflakes for the enhanced photocatalytic degradation performance and mechanistic investigations. Phys B Condens Matter. 2023;670:415336. doi: 10.1016/j.physb.2023.415336
  • Patil SS, Amarnath CA, Anu Sukhdev CS. Investigation on integration of conducting polymers with Cu doped ZnO towards photocatalytic degradation of organic dye. Opt Mater. 2023;146:114575. doi: 10.1016/j.optmat.2023.114575
  • Tiwari S, Veeralingam S, Badhulika S. ZnSe nanoflakes/ZnO quantum dots heterojunction-based bandgap engineered, flexible broadband photodetector on paper substrate. Mater Res Bull. 2023;166:112374. doi: 10.1016/j.materresbull.2023.112374
  • Verma S, Younis SA, Kim K-H, et al. Anisotropic ZnO nanostructures and their nanocomposites as an advanced platform for photocatalytic remediation. J Hazard Mater. 2021;415:125651. doi: 10.1016/j.jhazmat.2021.125651
  • Song Gan J, Bing Li X, Arif U, et al. Development and characterization of silver modified novel graphitic-carbon nitride (Ag-ZnO/C3N4) coupled with metal oxide photocatalysts for accelerated degradation of dye-based emerging pollutants. Surf Interfaces. 2023;39:102938. doi: 10.1016/j.surfin.2023.102938
  • Usha Jinendra BMN, Bilehal D, Iqbal M, et al. Encapsulated Co-ZnO nanospheres as degradation tool for organic pollutants: synthesis, morphology, adsorption and photo luminescent investigations. Spectrochim Acta A Mol Biomol Spectrosc. 2023;299:122879. doi: 10.1016/j.saa.2023.122879
  • França R, Araujo FP, Castro-Lopes S, et al. Effect of Cr cations addition on the structural, morphological, optical, and photocatalytic properties of Er-doped ZnO structures. Mater Today Commun. 2023;37:107419. doi: 10.1016/j.mtcomm.2023.107419
  • Fazal Ur Rehman M, Zahra M, Shoukat W, et al. Surface modified ZnO nano structures: electrochemical studies for energy applications and removal of emerging organic pollutant dye by photo induced hetero-catalysis. Inorg Chem Commun. 2023;157:111276. doi: 10.1016/j.inoche.2023.111276
  • Yousefinia A, Khodadadi M, Mortazavi-Derazkola S. An efficient biosynthesis of novel ZnO/CuO nanocomposites using berberis vulgaris extract (ZnO/CuO@BVENCs) for enhanced photocatalytic degradation of pollution, antibacterial and antifungal activity. Environ Technol Innov. 2023;32:103340. doi: 10.1016/j.eti.2023.103340
  • Mrabet C, Jaballah R, Mahdhi N, et al. CuO-ZnO nanocomposites-based thin films: characterization, physical properties and sunlight photocatalytic degradation of organic pollutants. J Alloys Compd. 2023;968:172252. doi: 10.1016/j.jallcom.2023.172252
  • Shanmugam P, Ngullie RC, Meejoo Smith S, et al. Visible-light induced photocatalytic removal of methylene blue dye by copper oxide decorated zinc oxide nanorods. Mater Sci Energy Technol. 2023;6:359–367. doi: 10.1016/j.mset.2023.03.001
  • Dinh Lam N, Van Thanh H, Duc Thien T, et al. The roles of the CuO buffer layer on the photocatalytic activity of the p-Si/p-CuO/n-ZnO composite films. Mater Trans. 2023;64(2):578–585. doi: 10.2320/matertrans.MT-M2022145
  • Nguyen DT, Duc Tran M, Van Hoang T, et al. Experimental and numerical study on photocatalytic activity of the ZnO nanorods/CuO composite film. Sci Rep. 2020;10(1):7792. doi: 10.1038/s41598-020-64784-w
  • Sun X, Jing M, Dong H, et al. CuO-ZnO submicroflakes with nanolayered Al2O3 coatings as high performance anode materials in lithium-ion batteries. J Alloys Compd. 2023;953:170137. doi: 10.1016/j.jallcom.2023.170137
  • Keshavulu Masula PS, Vijay Kumar P, Bhongiri Y, et al. Synthesis and characterization of NiO–Bi2O3 nanocomposite material for effective photodegradation of the dyes and agricultural soil pollutants. Mater Sci Semicond Process. 2023;160:10X7432. doi: 10.1016/j.mssp.2023.107432
  • Masula K, Yadagiri Bhongiri GRR, Vijay Kumar P, et al. Evolution of photocatalytic activity of CeO2–Bi2O3 composite material for wastewater degradation under visible-light irradiation. Opt Mater. 2022;126:112201. doi: 10.1016/j.optmat.2022.112201
  • Ye L, He X, Obeng E, et al. The CuO and AgO co-modified ZnO nanocomposites for promoting wound healing in Staphylococcus aureus infection. Mater Today Bio. 2023;18:100552. doi: 10.1016/j.mtbio.2023.100552
  • Fouda A, Salem SS, Wassel AR, et al. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Hellyon. 2020;6(9):e04896. doi: 10.1016/j.heliyon.2020.e04896
  • Shitu IG, Katibi KK, Muhammad A, et al. Effects of irradiation time on the structural, elastic, and optical properties of hexagonal (wurtzite) zinc oxide nanoparticle synthesised via microwave-assisted hydrothermal route. Opt Quantum Electron. 2024;56(2):266. doi: 10.1007/s11082-023-05867-6
  • Deepika R, Veerakumar P. Microwave-assisted hydrothermal synthesis of ZnO@ZrO2 nanohybrid for biomedical and photocatalytic applications, colloids and surfaces a. Physicochemical Eng Aspects. 2024;688:133574. doi: 10.1016/j.colsurfa.2024.133574
  • Preethi T, Pachamuthu MP, Senthil K, et al. Microwave-assisted synthesis of SnO2: ZnO nanocomposites for photocatalytic, antimicrobial and electrochemical urea detection applications. J Mol Struct. 2024;1304:137667. doi: 10.1016/j.molstruc.2024.137667
  • Preet Singh G, Singh KJ, Chandel K, et al. Green synthesis of XNiO doped CuO nanoparticles: potential for environmental remediation. Inorg Chem Commun. 2023;157:111250. doi: 10.1016/j.inoche.2023.111250
  • Yu Y, Yao B, Cao B, et al. Construction of 2D/1D ZnIn2S4/ZnO with Z-scheme system for boosting photocatalytic performance. J Alloys Compd. 2022;924:166455. doi: 10.1016/j.jallcom.2022.166455
  • Shi T, Liu Y, Niu X, et al. Novel ZnO/BiOI nanorod photoanode with interface p-n heterojunction and excellent photoelectric conversion efficiency for photocathodic protection of stainless steel. Colloids Surf A Physicochem Eng Asp. 2023;676:132124. doi: 10.1016/j.colsurfa.2023.132124
  • Nitta R, Kubota Y, Kishi T, et al. Fabrication of nanostructured CuO thin films with controllable optical band gaps using a mist spin spray technique at 90 °C. Thin Solid Films. 2022;762:139555. doi: 10.1016/j.tsf.2022.139555
  • Kumaresan N, Maria Angelin Sinthiya M, Ramamurthi K, et al. Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arabian J Chem. 2020;13(2):3910–3928. doi: 10.1016/j.arabjc.2019.03.002
  • Kumari V, Yadav S, Jindal J, et al. Synthesis and characterization of heterogeneous ZnO/CuO hierarchical nanostructures for photocatalytic degradation of organic pollutant. Adv Powder Technol. 2020;31(7):2658–2668. doi: 10.1016/j.apt.2020.04.033
  • Cao F, Wang T, Ji X. Enhanced visible photocatalytic activity of tree-like ZnO/CuO nanostructure on Cu foam. Appl Surface Sci. 2019;471:417–424. doi: 10.1016/j.apsusc.2018.12.034
  • Pal S, Maiti S, Maiti UN, et al. Low temperature solution processed ZnO/CuO heterojunction photocatalyst for visible light induced photo-degradation of organic pollutants. Cryst Eng Comm. 2015;17:1464–1476. doi: 10.1039/C4CE02159B
  • Kumar PS, Selvakumar M, Babu SG, et al. CuO/ZnO nanorods: an affordable efficient p-n heterojunction and morphology dependent photocatalytic activity against organic contaminants. J Alloys Compd. 2017;701:562–573. doi: 10.1016/j.jallcom.2017.01.126
  • Li B, Wang Y. Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite. Superlattices Microstruct. 2010;47(5):615–623. doi: 10.1016/j.spmi.2010.02.005
  • Saravanakkumar D, Abou Oualid H, Younes Brahmi AA, et al. Synthesis and characterization of CuO/ZnO/CNTs thin films on copper substrate and its photocatalytic applications. OpenNano. 2019;4:100025. doi: 10.1016/j.onano.2018.11.001
  • Najafidoust A, Haghighi M, Abbasi Asl E, et al. Sono-precipitation dispersion of CuO-doped ZnO nanostructures over SiO2-aerogel for photo-removal of methylene blue, congo red and methyl orange from wastewater. J Ind Eng Chem. 2024;131:346–359. doi: 10.1016/j.jiec.2023.10.036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.