173
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Anti-Inflammatory Effect of Dehydroxymethylepoxyquinomicin, a Nuclear factor–κB Inhibitor, on Endotoxin-Induced Uveitis in Rats In vivo and In vitro

, , , , &
Pages 240-248 | Received 10 Sep 2018, Accepted 08 Jan 2019, Published online: 05 Apr 2019

REFERENCES

  • de Smet MD, Taylor SR, Bodaghi B, et al. Understanding uveitis: the impact of research on visual outcomes. Prog Retin Eye Res. 2011;30:452–470. doi:10.1016/j.preteyeres.2011.06.005.
  • Lee FF, Foster CS. Pharmacotherapy of uveitis. Expert Opin Pharmacother. 2010;11:1135–1146. doi:10.1517/14656561003713534.
  • Dunne JA, Jacobs N, Morrison A, Gilbert DJ. Efficacy in anterior uveitis of two known steroids and topical tolmetin. Br J Ophthalmol. 1985;69:120–125.
  • Jabs DA, Rosenbaum JT, Foster CS, et al. Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. Am J Ophthalmol. 2000;130:492–513.
  • Rosenbaum JT, McDevitt HO, Guss RB, Egbert PR. Endotoxin-induced uveitis in rats as a model for human disease. Nature. 1980;286:611–613.
  • Rosenbaum JT, Raymond W. Monocyte chemotactic activity induced by intravitreal endotoxin. Invest Ophthalmol Vis Sci. 1985;26:1267–1273.
  • Rosenbaum JT, Boney RS. Activity of an interleukin 1 receptor antagonist in rabbit models of uveitis. Arch Ophthalmol. 1992;110:547–549.
  • Bhattacherjee P, Williams RN, Eakins KE. An evaluation of ocular inflammation following the injection of bacterial endotoxin into the rat foot pad. Invest Ophthalmol Vis Sci. 1983;24:196–202.
  • Okumura A, Mochizuki M. Endotoxin-induced uveitis in rats: morphological and biochemical study. Jpn J Ophthalmol. 1988;32:457–465.
  • McMenamin PG, Crewe J. Endotoxin-induced uveitis. Kinetics and phenotype of the inflammatory cell infiltrate and the response of the resident tissue macrophages and dendritic cells in the iris and ciliary body. Invest Ophthalmol Vis Sci. 1995;36:1949–1959.
  • Shen DF, Chang MA, Matteson DM, Buggage R, Kozhich AT, Chan CC. Biphasic ocular inflammatory response to endotoxin-induced uveitis in the mouse. Arch Ophthalmol. 2000;118:521–527.
  • Planck SR, Huang XN, Robertson JE, Rosenbaum JT. Cytokine mRNA levels in rat ocular tissues after systemic endotoxin treatment. Invest Ophthalmol Vis Sci. 1994;35:924–930.
  • Yoshida M, Yoshimura N, Hangai M, Tanihara H, Honda Y. Interleukin-1 alpha, interleukin-1 beta, and tumor necrosis factor gene expression in endotoxin-induced uveitis. Invest Ophthalmol Vis Sci. 1994;35:1107–1113.
  • Lennikov A, Kitaichi N, Noda K, et al. Amelioration of endotoxin-induced uveitis treated with an IkappaB kinase beta inhibitor in rats. Mol Vis. 2012;18:2586–2597.
  • de Vos AF, van Haren MA, Verhagen C, Hoekzema R, Kijlstra A. Kinetics of intraocular tumor necrosis factor and interleukin-6 in endotoxin-induced uveitis in the rat. Invest Ophthalmol Vis Sci. 1994;35:1100–1106.
  • Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15:362–374. doi:10.1038/nri3834.
  • Hayden MS, Ghosh S. NF-kappaB in immunobiology. Cell Res. 2011;21:223–244. doi:10.1038/cr.2011.13.
  • Wu J, Ding J, Yang J, Guo X, Zheng Y. MicroRNA roles in the nuclear factor Kappa B signaling pathway in Cancer. Front Immunol. 2018;9:546. doi:10.3389/fimmu.2018.00546.
  • Okamoto H, Cujec TP, Yamanaka H, Kamatani N. Molecular aspects of rheumatoid arthritis: role of transcription factors. Febs J. 2008;275:4463–4470. doi:10.1111/j.1742-4658.2008.06582.x.
  • Matsumoto A, Ariga S, To-E H, et al. Synthesis of NF-B activation inhibitors derived from epoxyquinomicin C. Bioorg Med Chem Lett. 2000;10:865–869.
  • Ariga A, Namekawa J, Matsumoto N, Inoue J, Umezawa K. Inhibition of tumor necrosis factor-alpha -induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem. 2002;277:24625–24630. doi:10.1074/jbc.M112063200.
  • Umezawa K, Chaicharoenpong C. Molecular design and biological activities of NF-kappaB inhibitors. Mol Cells. 2002;14:163–167.
  • Yamamoto M, Horie R, Takeiri M, Kozawa I, Umezawa K. Inactivation of nuclear factor kappa B components by covalent binding of (-)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J Med Chem. 2008;51:5780–5788. doi:10.1021/jm8006245.
  • Kosaka T, Miyajima A, Kikuchi E, et al. The novel NF-kappaB activation inhibitor dehydroxymethyl-epoxyquinomicin suppresses anti-Thy1.1-induced glomerulonephritis in rats. Nephron Exp Nephrol. 2008;110:e17–24. doi:10.1159/000150314.
  • Nishimura D, Ishikawa H, Matsumoto K, et al. DHMEQ, a novel NF-kappaB inhibitor, induces apoptosis and cell-cycle arrest in human hepatoma cells. Int J Oncol. 2006;29:713–719.
  • Wakamatsu K, Nanki T, Miyasaka N, Umezawa K, Kubota T. Effect of a small molecule inhibitor of nuclear factor-kappaB nuclear translocation in a murine model of arthritis and cultured human synovial cells. Arthritis Res Ther. 2005;7:R1348–1359. doi:10.1186/ar1834.
  • Iwata D, Kitaichi N, Miyazaki A, et al. Amelioration of experimental autoimmune uveoretinitis with nuclear factor-{kappa}B Inhibitor dehydroxy methyl epoxyquinomicin in mice. Invest Ophthalmol Vis Sci. 2010;51:2077–2084. doi:10.1167/iovs.09-4030.
  • Jo YJ, Sonoda KH, Oshima Y, et al. Establishment of a new animal model of focal subretinal fibrosis that resembles disciform lesion in advanced age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52:6089–6095. doi:10.1167/iovs.10-5189.
  • Watanabe T, Keino H, Sato Y, Kudo A, Kawakami H, Okada AA. High mobility group box protein-1 in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2009;50:2283–2290. doi:10.1167/iovs.08-2709.
  • Maruyama K, Ii M, Cursiefen C, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest. 2005;115:2363–2372. doi:10.1172/JCI23874.
  • Ohta K, Nakayama K, Kurokawa T, Kikuchi T, Yoshimura N. Inhibitory effects of pyrrolidine dithiocarbamate on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci. 2002;43:744–750.
  • Chang YH, Horng CT, Chen YH, et al. Inhibitory effects of glucosamine on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci. 2008;49:5441–5449. doi:10.1167/iovs.08-1784.
  • Kamoshita M, Ozawa Y, Kubota S, et al. AMPK-NF-kappaB axis in the photoreceptor disorder during retinal inflammation. PLoS One. 2014;9:e103013. doi:10.1371/journal.pone.0103013.
  • Kuraya D, Watanabe M, Koshizuka Y, et al. Efficacy of DHMEQ, a NF-kappaB inhibitor, in islet transplantation: I. HMGB1 suppression by DHMEQ prevents early islet graft damage. Transplantation. 2013;96:445–453. doi:10.1097/TP.0b013e31829b0744.
  • Inokawa S, Watanabe T, Keino H, et al. Dehydroxymethylepoxyquinomicin, a novel nuclear factor-kappaB inhibitor, reduces chemokines and adhesion molecule expression induced by IL-1beta in human corneal fibroblasts. Graefes Arch Clin Exp Ophthalmol. 2015;253:557–563. doi:10.1007/s00417-014-2879-9.
  • de Vos AF, Klaren VN, Kijlstra A. Expression of multiple cytokines and IL-1RA in the uvea and retina during endotoxin-induced uveitis in the rat. Invest Ophthalmol Vis Sci. 1994;35:3873–3883.
  • Leung KW, Barnstable CJ, Tombran-Tink J. Bacterial endotoxin activates retinal pigment epithelial cells and induces their degeneration through IL-6 and IL-8 autocrine signaling. Mol Immunol. 2009;46:1374–1386. doi:10.1016/j.molimm.2008.12.001.
  • Chui JJ, Li MW, Di Girolamo N, Chang JH, McCluskey PJ, Wakefield D. Iris pigment epithelial cells express a functional lipopolysaccharide receptor complex. Invest Ophthalmol Vis Sci. 2010;51:2558–2567. doi:10.1167/iovs.09-3923.
  • Shen DF, Buggage RR, Eng HC, Chan CC. Cytokine gene expression in different strains of mice with endotoxin-induced uveitis (EIU). Ocul Immunol Inflamm. 2000;8:221–225.
  • Gaudio PA. A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul Immunol Inflamm. 2004;12:169–192. doi:10.1080/092739490500192.
  • Kersey JP, Broadway DC. Corticosteroid-induced glaucoma: a review of the literature. Eye (Lond). 2006;20:407–416. doi:10.1038/sj.eye.6701895.
  • Starenki DV, Namba H, Saenko VA, et al. Induction of thyroid cancer cell apoptosis by a novel nuclear factor kappaB inhibitor, dehydroxymethylepoxyquinomicin. Clin Cancer Res. 2004;10:6821–6829. doi:10.1158/1078-0432.CCR-04-0463.
  • Ueki S, Yamashita K, Aoyagi T, et al. Control of allograft rejection by applying a novel nuclear factor-kappaB inhibitor, dehydroxymethylepoxyquinomicin. Transplantation. 2006;82:1720–1727. doi:10.1097/01.tp.0000250548.13063.44.
  • Chiba T, Kondo Y, Shinozaki S, et al. A selective NFkappaB inhibitor, DHMEQ, reduced atherosclerosis in ApoE-deficient mice. J Atheroscler Thromb. 2006;13:308–313.
  • Shimizu K, Konno S, Ozaki M, et al. Dehydroxymethylepoxyquinomicin (DHMEQ), a novel NF-kappaB inhibitor, inhibits allergic inflammation and airway remodelling in murine models of asthma. Clin Exp Allergy. 2012;42:1273–1281. doi:10.1111/j.1365-2222.2012.04007.x.
  • Ukaji T, Umezawa K. Novel approaches to target NF-κB and other signaling pathways in cancer stem cells. Adv Biol Regul. 2014;56:108–115. doi:10.1016/j.jbior.2014.06.001.
  • de Castro Barbosa ML, Da Conceicao RA, Fraga AGM, et al. NF-κB signaling pathway inhibitors as anticancer drug candidates. Anticancer Agents Med Chem. 2017;17:483–490. doi:10.2174/1871520616666160729112854.
  • Miyake A, Dewan MZ, Ishida T, et al. Induction of apoptosis in Epstein-Barr virus-infected B-lymphocytes by the NF-kappaB inhibitor DHMEQ. Microbes Infect. 2008;10:748–756. doi:10.1016/j.micinf.2008.04.002.
  • Fukushima T, Kawaguchi M, Yorita K, et al. Antitumor effect of dehydroxymethylepoxyquinomicin, a small molecule inhibitor of nuclear factor-κB, on glioblastoma. Neuro Oncol. 2012;14:19–28. doi:10.1093/neuonc/nor168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.