341
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Local Cytokine Expression Profiling in Patients with Specific Autoimmune Uveitic Entities

, , , , , & show all
Pages 453-462 | Received 01 Oct 2018, Accepted 03 Apr 2019, Published online: 04 Jun 2019

References

  • Abu El-Asrar AM, Berghmans N, Al-Obeidan SA, et al. The Cytokine Interleukin-6 and the Chemokines CCL20 and CXCL13 are novel biomarkers of specific endogenous uveitic entities. Invest Ophthalmol Vis Sci. 2016;57:4606–4613. doi:10.1167/iovs.16-19758.
  • El-Asrar AM, Al-Obeidan SS, Kangave D, et al. CXC chemokine expression profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Immunobiology. 2011;216:1004–1009. doi:10.1016/j.imbio.2011.03.007.
  • El-Asrar AM, Struyf S, Kangave D, et al. Cytokine profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Clin Immunol. 2011;139:177–184. doi:10.1016/j.clim.2011.01.014.
  • El-Asrar AM, Berghmans N, Al-Obeidan SA, et al. Differential CXC and CX3C chemokine expression profiles in aqueous humor of patients with specific endogenous uveitic entities. Invest Ophthamol Vis Sci. 2018;59:2222–2228. doi:10.1167/iovs.17-23225.
  • Abu El-Asrar AM, Berghmans N, Al-Obeidan SA, et al. The CC chemokines CCL8, CCL13 and CCL20 are local inflammatory biomarkers of HLA-B27-associated uveitis. Acta Ophthalmol. 2019;97:e122–e128. doi:10.1111/aos.13835.
  • Abu El-Asrar AM, Berghmans N, Al-Obeidan SA, et al. Expression of interleukin (IL)-10 family cytokines in aqueous humour of patients with specific endogenous uveitic entities: elevated levels of IL-19 in human leucocyte antigen-B27-associated uveitis. Acta Ophthalmol. 2019 Feb 13. DOI:10.1111/aos.14039.
  • Romagnani S. The Th1/Th2 paradigm. Immunol Today. 1997;18:263–266.
  • Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383:787–793. doi:10.1038/383787a0.
  • Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN. Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology. 2014;121:785–796. doi:10.1016/j.ophtha.2013.09.048.
  • Al Rashidi S, Al Fawaz A, Kangave D, et al. Long-term clinical outcomes in patients with refractory uveitis associated with Behçet disease treated with infliximab. Ocul Immunol Inflamm. 2013;21:468–474. doi:10.3109/09273948.2013.779727.
  • Mesquida M, Molins B, Llorenç V, et al. Targeting interleukin-6 in autoimmune uveitis. Autoimmun Rev. 2017;16:1079–1089. doi:10.1016/j.autrev.2017.08.002.
  • Mesquida M, Molins B, Llorenç V, Sainz de la Maza M, Adán A. Long-term effects of tocilizumab therapy for refractory uveitis-related macular edema. Ophthalmology. 2014;121:2380–2386. doi:10.1016/j.ophtha.2014.06.050.
  • Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood. 1993;81:2844–2853.
  • Ogawa M, Matsunaga T. Humoral regulation of hematopoietic stem cells. Ann N Y Acad Sci. 1999;872:17–24.
  • Nakashima K, Taga T. gp130 and the IL-6 family of cytokines: signaling mechanisms and thrombopoietic activities. Semin Hematol. 1998;35:210–221.
  • Seita J, Asakawa M, Ooehara J, et al. Interleukin-27 directly induces differentiation in hematopoietic stem cells. Blood. 2008;111:1903–1912. doi:10.1182/blood-2007-06-093328.
  • Hasegawa H, Mizoguchi I, Chiba Y, Ohashi M, Xu M, Yoshimoto T. Expanding diversity in molecular structures and functions of the IL-6/IL-12 heterodimeric cytokine family. Front Immunol. 2016;7:479 eCollection. doi:10.3389/fimmu.2016.00479.
  • Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119:651–665. doi:10.1182/blood-2011-04-325225.
  • Croft M, Siegel RM. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat Rev Rheumatol. 2017;13:217–233. doi:10.1038/nrrheum.2017.22.
  • Croft M, Duan W, Choi H, Eun SY, Madireddi S, Mehta A. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol. 2012;33:144–152. doi:10.1016/j.it.2011.10.004.
  • Al Dhahri H, Al Rubaie K, Hemachandran S, et al. Patterns of uveitis in a university-based tertiary referral center in Riyadh, Saudi Arabia. Ocul Immunol Inflamm. 2015;23:311–319. doi:10.3109/09273948.2014.939197.
  • Abu El-Asrar AM, Al Tamimi M, Hemachandran S, Al-Mezaine HS, Al-Muammar A, Kangave D. Prognostic factors for clinical outcomes in patients with Vogt-Koyanagi-Harada disease treated with high-dose corticosteroids. Acta Ophthalmol. 2013;91:e486–e493. doi:10.1111/aos.12127.
  • Standardization of Uveitis Nomenclature (SUN). Working Group: standardization of uveitis nomenclature for reporting clinical data: results of the first international workshop. Am J Ophthalmol. 2005;140:509–516.
  • Murakami M, Kamimura D, Hirano T. New IL-6 (gp130) family cytokine members, CLC/NNT1/BSF3 and IL-27. Growth Factors. 2004;22:75–77.
  • Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995;86:1243–1254.
  • Permyakov EA, Uversky VN, Permyakov SE. Interleukin-11: a Multifunctional Cytokine with Intrinsically Disordered Regions. Cell Biochem Biophys. 2016;74:285–296. doi:10.1007/s12013-016-0752-7.
  • Putoczki TL, Thiem S, Loving A, et al. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 2013;24:257–271. doi:10.1016/j.ccr.2013.06.017.
  • Johnstone CN, Chand A, Putoczki TL, Ernst M. Emerging roles for IL-11 signaling in cancer development and progression: focus on breast cancer. Cytokine Growth Factor Rev. 2015;26:489–498. doi:10.1016/j.cytogfr.2015.07.015.
  • Putoczki T, Ernst M. More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol. 2010;88:1109–1117. doi:10.1189/jlb.0410226.
  • Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol. 2014;26:54–74. doi:10.1016/j.smim.2014.01.001.
  • Xu DH, Zhu Z, Wakefield MR, Xiao H, Bai Q, Fang Y. The role of IL-11 in immunity and cancer. Cancer Lett. 2016;373:156–163. doi:10.1016/j.canlet.2016.01.004.
  • Zhang X, Tao Y, Chopra M, et al. IL-11 Induces Th17 cell responses in patients with early relapsing-remitting multiple sclerosis. J Immunol. 2015;194:5139–5149. doi:10.4049/jimmunol.1401680.
  • Elshabrawy HA, Volin MV, Essani AB, et al. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis. 2018;21:215–228. doi:10.1007/s10456-017-9589-y.
  • Okamoto H, Yamamura M, Morita Y, Harada S, Makino H, Ota Z. The synovial expression and serum levels of interleukin-6, interleukin-11, leukemia inhibitory factor, and oncostatin M in rheumatoid arthritis. Arthritis Rheum. 1997;40:1096–1105. doi:10.1002/1529-0131(199706)40:6<1096::AID-ART13>3.0.CO;2-D.
  • Tang W, Geba GP, Zheng T, et al. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J Clin Invest. 1996;98:2845–2853. doi:10.1172/JCI119113.
  • Kapina MA, Shepelkova GS, Avdeenko VG, et al. Interleukin-11 drives early lung inflammation during Mycobacterium tuberculosis infection in genetically susceptible mice. PLoS One. 2011;6:e21878. doi:10.1371/journal.pone.0021878.
  • Wong PK, Campbell IK, Robb L, Wicks IP. Endogenous IL-11 is pro-inflammatory in acute methylated bovine serum albumin/interleukin-1-induced (mBSA/IL-1)arthritis. Cytokine. 2005;29:72–76. doi:10.1016/j.cyto.2004.09.011.
  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210. doi:10.1002/path.2277.
  • Schafer S, Viswanathan S, Widjaja AA, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110–115. doi:10.1038/nature24676.
  • Pathanapitoon K, Dodds EM, Cunningham ET Jr, Rothova A. Clinical Spectrum of HLA-B27-associated Ocular Inflammation. Ocul Immunol Inflamm. 2017;25:569–576. doi:10.1080/09273948.2016.1185527.
  • Yang P, Wan W, Du L, et al. Clinical features of HLA-B27-positive acute anterior uveitis with or without ankylosing spondylitis in a Chinese cohort. Br J Ophthalmol. 2018;102:215–219. doi:10.1136/bjophthalmol-2016-309499.
  • Bhattacharya P, Budnick I, Singh M, et al. Dual Role of GM-CSF as a Pro-Inflammatory and a regulatory cytokine: implications for immune therapy. J Interferon Cytokine Res. 2015;35:585–599. doi:10.1089/jir.2014.0149.
  • Vignali DA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol. 2012;13:722–728. doi:10.1038/ni.2366.
  • Croxford AL, Kulig P, Becher B. IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev. 2014;25:415–421. doi:10.1016/j.cytogfr.2014.07.017.
  • Sawant DV, Hamilton K, Vignali DA. Interleukin-35: expanding Its Job Profile. J Interferon Cytokine Res. 2015;35:499–512. doi:10.1089/jir.2015.0015.
  • Yoshida H, Hunter CA. The immunobiology of interleukin-27. Annu Rev Immunol. 2015;33:417–443. doi:10.1146/annurev-immunol-032414-112134.
  • Stohl W. Therapeutic targeting of the BAFF/APRIL axis in systemic lupus erythematosus. Expert Opin Ther Targets. 2014;18:473–489. doi:10.1517/14728222.2014.888415.
  • Vincent FB, Morand EF, Schneider P, Mackay F. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10:365–373. doi:10.1038/nrrheum.2014.33.
  • Nakayamada S, Tanaka Y. BAFF- and APRIL-targeted therapy in systemic autoimmune diseases. Inflamm Regen. 2016;36:6. doi:10.1186/s41232-016-0015-4.
  • Samy E, Wax S, Huard B, Hess H, Schneider P. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol. 2017;36:3–19. doi:10.1080/08830185.2016.1276903.
  • Lahiri A, Pochard P, Le Pottier L, et al. The complexity of the BAFF TNF-family members: implications for autoimmunity. J Autoimmun. 2012;39:189–198. doi:10.1016/j.jaut.2012.05.009.
  • Chen M, Lin X, Liu Y, et al. The function of BAFF on T helper cells in autoimmunity. Cytokine Growth Factor Rev. 2014;25:301–305. doi:10.1016/j.cytogfr.2013.12.011.
  • Kolfschoten GM, Pradet-Balade B, Hahne M, Medema JP. TWE-PRIL; a fusion protein of TWEAK and APRIL. Biochem Pharmacol. 2003;66:1427–1432.
  • Salazar-Camarena DC, Ortiz-Lazareno PC, Cruz A, et al. Association of BAFF, APRIL serum levels, BAFF-R, TACI and BCMA expression on peripheral B-cell subsets with clinical manifestations in systemic lupus erythematosus. Lupus. 2016;25:582–592. doi:10.1177/0961203315608254.
  • Gø E, Nossent JC. APRIL levels strongly correlate with IL-17 in systemic lupus erythematosus. Lupus. 2014;23:1383–1391. doi:10.1177/0961203314543914.
  • Boghdadi G, Elewa EA. Increased serum APRIL differentially correlates with distinct cytokine profiles and disease activity in systemic lupus erythematosus patients. Rheumatol Int. 2014;34:1217–1223. doi:10.1007/s00296-014-3020-4.
  • Moura RA, Canhão H, Polido-Pereira J, et al. BAFF and TACI gene expression are increased in patients with untreated very early rheumatoid arthritis. J Rheumatol. 2013;40:1293–1302. doi:10.3899/jrheum.121110.
  • Wei F, Chang Y, Wei W. The role of BAFF in the progression of rheumatoid arthritis. Cytokine. 2015;76:537–544. doi:10.1016/j.cyto.2015.07.014.
  • Weldon AJ, Moldovan I, Cabling MG, et al. Surface APRIL is elevated on myeloid cells and is associated with disease activity in patients with rheumatoid arthritis. J Rheumatol. 2015;42:749–759. doi:10.3899/jrheum.140630.
  • Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg JE, Mariette X. B-cell activating factor of the tumour necrosis factor family expression in blood monocytes and T cells from patients with primary Sjögren‘s syndrome. Scand J Immunol. 2008;67:185–192. doi:10.1111/j.1365-3083.2007.02049.x.
  • Varin MM, Le Pottier L, Youinou P, Saulep D, Mackay F, Pers JO. B-cell tolerance breakdown in Sjögren‘s syndrome: focus on BAFF. Autoimmun Rev. 2010;9:604–608. doi:10.1016/j.autrev.2010.05.006.
  • Matsushita T, Fujimoto M, Hasegawa M, et al. Elevated serum APRIL levels in patients with systemic sclerosis: distinct profiles of systemic sclerosis categorized by APRIL and BAFF. J Rheumatol. 2007;34:2056–2062.
  • Bielecki M, Kowal K, Lapinska A, Bernatowicz P, Chyczewski L, Kowal-Bielecka O. Increased production of a proliferation-inducing ligand (APRIL) by peripheral blood mononuclear cells is associated with antitopoisomerase I antibody and more severe disease in systemic sclerosis. J Rheumatol. 2010;37:2286–2289. doi:10.3899/jrheum.100454.
  • Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006;54:192–201. doi:10.1002/(ISSN)1529-0131.
  • Matsushita T, Hasegawa M, Matsushita Y, et al. Elevated serum BAFF levels in patients with localized scleroderma in contrast to other organ-specific autoimmune diseases. Exp Dermatol. 2007;16:87–93. doi:10.1111/j.1600-0625.2006.00485.x.
  • Thangarajh M, Gomes A, Masterman T, Hillert J, Hjelmström P. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol. 2004;152:183–190. doi:10.1016/j.jneuroim.2004.03.017.
  • Thangarajh M, Masterman T, Rot U, et al. Increased levels of APRIL (a proliferation-inducing ligand) mRNA in multiple sclerosis. J Neuroimmunol. 2005;167:210–214. doi:10.1016/j.jneuroim.2005.06.024.
  • Wang H, Wang K, Zhong X, et al. Cerebrospinal fluid BAFF and APRIL levels in neuromyelitis optica and multiple sclerosis patients during relapse. J Clin Immunol. 2012;32:1007–1011. doi:10.1007/s10875-012-9709-9.
  • Aziz HA, Flynn HW Jr, Young RC, Davis JL, Dubovy SR. Sympathetic ophthalmia: clinicopathologic correlation in a consecutive case series. Retina. 2015;35:1696–1703. doi:10.1097/IAE.0000000000000506.
  • Abu El-Asrar AM, Struyf S, Van Den Broeck C, et al. Expression of chemokines and gelatinase B in sympathetic ophthalmia. Eye. 2007;21:649–657. doi:10.1038/sj.eye.6702342.
  • Inomata H, Sakamoto T. Immunohistochemical studies of Vogt-Koyanagi-Harada disease with sunset sky fundus. Curr Eye Res. 1990;9:Suppl:35–40. doi:10.3109/02713689008999417.
  • Chan CC, Palestine AG, Kuwabara T, Nussenblatt RB. Immunopathologic study of Vogt-Koyanagi-Harada syndrome. Am J Ophthalmol. 1988;105:607–611.
  • Fazel SB, Howie SE, Krajewski AS, Lamb D. B lymphocyte accumulations in human pulmonary sarcoidosis. Thorax. 1992;47:964–967.
  • Krause P, Zahner SP, Kim G, Shaikh RB, Steinberg MW, Kronenberg M. The tumor necrosis factor family member TNFSF14 (LIGHT) is required for resolution of intestinal inflammation in mice. Gastroenterology. 2014;146:1752–1762. doi:10.1053/j.gastro.2014.02.010.
  • Petreaca ML, Do D, Dhall S, et al. Deletion of a tumor necrosis superfamily gene in mice leads to impaired healing that mimics chronic wounds in humans. Wound Repair Regen. 2012;20:353–366. doi:10.1111/j.1524-475X.2012.00785.x.
  • Petreaca ML, Yao M, Ware C, Martins-Green MM. Vascular endothelial growth factor promotes macrophage apoptosis through stimulation of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT). Wound Repair Regen. 2008;16:602–614. doi:10.1111/j.1524-475X.2008.00411.x.
  • Maña P, Liñares D, Silva DG, et al. LIGHT (TNFSF14/CD258) is a decisive factor for recovery from experimental autoimmune encephalomyelitis. J Immunol. 2013;191:154–163. doi:10.4049/jimmunol.1203016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.